A GALOIS TYPE THEOREM IN VON NEUMANN ALGEBRAS

HISASHI CHODA

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. We shall give a simple proof for a Galois type theorem: Let α be a dual free action of a discrete group G on a factor M. If an automorphism θ of M leaves the fixed point algebra M^{α} pointwise invariant then there exists a $g_0 \in G$ with $\theta = \alpha_{g_0}$.

Since the Galois theory for von Neumann algebras was initiated by M. Nakamura and Z. Takeda in [8], the theory has been developed by several authors ([1, 4] and see [9] for other references). Recently, Y. Katayama and M. Takesaki [6] establish the asymptotic Galois correspondence for discrete amenable group action on AFD factors. They prove their main theorm by reducing it to the following:

Theorem A [6, Theorem 3.1]. Let α be a dominant free action of a discrete group G on a properly infinite factor M and M^{α} the fixed point algebra of M under α . If an automorphism θ of M leaves M^{α} pointwise invariant, then there exists $g_0 \in G$ with $\theta = \alpha_{g_0}$.

Ikeshoji [5] shows a theorem of the above type for locally compact group actions on von Neumann algebras. Also, as a theory of this type for discrete groups, in [2], we decided an automorphism fixing the fixed point algebra of a discrete automorphism group.

Let M be a von Neumann algebra, G a countable discrete group, α an action of G on M, and M^{α} the fixed point algebra of M under the action α . We consider a Galois type theorem under the following conditions:

- (*) There exists a faithful normal expectation ε of $(M^{\alpha})'$ onto M', where C' is the commutant of an algebra C.
- (**) There exists a group H of automorphisms of M with the following properties (1) and (2):
 - (1) H is ergodic on the center of M.
 - (2) $\alpha_g h = h \alpha_g$ for all $g \in G$, $h \in H$.

We have proved a Galois type theorem:

Theorem B [2, Corollary 3]. Let M, G, α be as above. Suppose that the conditions (*) and (**) hold and that the action α is free. If an automorphism

Received by the editors November 27, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 46L55.

Key words and phrases. Galois theory, von Neumann algebra, factor, action, expectation.

 θ of M satisfies the following conditions (1) and (2):

- (1) $\theta h = h\theta$ for all $h \in H$,
- (2) $\theta(x) = x \text{ for all } x \in M^{\alpha}$,

then there exists $a \ g_0 \in G$ with $\theta = \alpha_{g_0}$.

In this paper, we shall show that Theorem A is obtained as an application of Theorem B.

At first, we shall show a lemma:

Lemma. If α is a dual action of a discrete group G on M then there exists a faithful normal expectation ε of $(M^{\alpha})'$ onto M'.

Proof. Since the action α is dual, by [9, Theorem II.2.4, p. 28], there exists a strictly wandering projection $p \in M$ for α , i.e., $\{\alpha_t(p); t \in G\}$ is a partition of the identity such that $\alpha_t(p)\alpha_s(p) = 0$ for $t \neq s$. We can complete the proof of the lemma in the same method as [3, Proof of Corollary 3] or [7, Example] (also cf. [4]). But we give a proof of the rest for the completeness. Put

$$\varepsilon(x) = \sum_{t \in G} \alpha_t(p) x \alpha_t(p) \qquad (x \in (M^{\alpha})').$$

Then ε is a faithful normal positive linear mapping. We may assume that M acts on a Hilbert space H and that there exists a unitary representation $u(\cdot)$ of G into H with $\alpha_t = \mathrm{Ad}u(t)$ for all $t \in G$, where, for unitary u preserving M invariant, $\mathrm{Ad}u$ is an automorphism of M induced by u. In this situation, the von Neumann algebra $(M^{\alpha})'$ is generated by $\{u(t); t \in G\} \cup M'$.

For any $m \in M'$ and $s \in G$, we have

$$\varepsilon(mu(s)) = \sum_{t \in G} \alpha_t(p) mu(s) \alpha_t(p)$$

$$= m \sum_{t \in G} \alpha_t(p) u(s) \alpha_t(p) = m \sum_{t \in G} \alpha_t(p) \alpha_{st}(p) u(s)$$

$$= \begin{cases} m, & (s = e), \\ 0, & (s \neq e), \end{cases}$$

where e is the unit of G.

Therefore, the map ε is a faithful normal expectation of $(M^{\alpha})'$ onto M'.

Theorem. Let M be a von Neumann algebra, G a discrete group and α a dual free action of G on M.

Suppose the condition (**) holds.

If an automorphism θ of M satisfies the following conditions (1) and (2):

- (1) $\theta h = h\theta$ for all $h \in H$,
- (2) $\theta(x) = x \text{ for all } x \in M^{\alpha}$,

then there exists a $g_0 \in G$ with $\theta = \alpha_{g_0}$.

Proof. By the lemma, the condition (*) for this situation holds, i.e., there exists a faithful normal expectation of $(M^{\alpha})'$ onto M'. Then, by Theorem B, there exists a $g_0 \in G$ such that $\theta = \alpha_{g_0}$.

As a corollary, we have the factor case, which shows Theorem A.

Corollary. Let α be a dual free action of a discrete group G on a factor M. If an automorphism θ of M leaves M^{α} pointwise invariant then there exists $a \ g_0 \in G$ with $\theta = \alpha_{g_0}$.

Proof. Put $H = \{ id \}$, where id is the identity automorphism of M. Then H has properties in the condition (**). Hence, the corollary follows from the theorem.

ACKNOWLEDGMENT

The author would like to express his thanks to Prof. Y. Katayama and the referee of this paper for informations on Ikeshoji's paper [5].

REFERENCES

- [1] H. Choda, A Galois correspondence in a von Neumann algebra, Tôhoku Math. J. **30** (1978), 491-504.
- [2] _____, An automorphism fixing the fixed point algebra of an automorphism group, Math. Japon. 24 (1979), 45-51.
- [3] M. Choda, Normal expectations and crossed products of von Neumann algebras, Proc. Japan Acad. 50 (1974), 738-742.
- [4] M. Henle, Galois theory of W*-algebras, preprint.
- [5] K. Ikeshoji, A generalization of Roberts-Tannaka duality theorem, J. Math. Soc. Japan 34 (1982), 55-59.
- [6] Y. Katayama and M. Takesaki, Asymptotic Galois correspondence for discrete amenable actions on AFD factors, preprint.
- [7] N. J. Munch, Conditional expectations and wandering operators for automorphic group actions, Math. Japon. 34 (1989), 65-72.
- [8] M. Nakamura and Z. Takeda, A Galois theory for finite factors, Proc. Japan Acad. 36 (1960), 258-260.
- [9] Y. Nakagami and M. Takesaki, Duality for crossed products of von Neumann algebras, Lecture Notes in Math., vol. 731, Springer-Verlag, New York and Berlin, 1979.

DEPARTMENT OF MATHEMATICS, OSAKA KYOIKU UNIVERSITY, TENNOJI, OSAKA, 543, JAPAN