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HERNÁN R. HENRlQUEZ AND EDUARDO A. HERNÁNDEZ

(Communicated by Palle E. T. Jorgensen)

Abstract. Let A be a linear operator in a Fréchet space X with the resol-

vent defined for all X > 0. In this note we prove that both the first and the

second order abstract Cauchy problems associated to A are well posed on cer-

tain maximal subspaces of X . Our results extend those of Kantorovitz [5] and

Cioranescu [2].

1. Introduction

The abstract Cauchy problem (abbreviated, ACP) associated to a linear oper-

ator A has been considered by many authors. For the most part of these works,

A is an operator defined in a Banach space X, but the situation whenever X

is a locally convex space also has been studied [3, 4, 6, 7].

The interest of the ACP in Fréchet spaces has been enhanced by the works of

Ujishima [10], Cioranescu [1], and recently Watanabe [11]. In [10, 1] the ACP
in Fréchet spaces has been related with the ACP in the sense of distributions
whilst in [11] the ACP of the second order has been resolved in certain linear

topological space included in X.
Let I bea Banach space and A be a linear operator in X such that the

resolvent operator P(A, A) = (A - A)~x is a bounded operator on X for all

X > 0. Recently S. Kantorovitz [5], for the first order case, and I. Cioranescu

[2] for the second one, have showed that the ACP is well posed in a maximal

subspace of X.
The aim of this note is to show that these results are also true when X is

a Fréchet space. In order to prove this assertion we will use the properties

of strongly continuous semigroup of operators and strongly continuous cosine

functions of operators. In particular, the first order ACP is well posed if and

only if A is the infinitesimal generator of a strongly continuous semigroup of

operators whilst the second order ACP is well posed if and only if A is the

infinitesimal generator of a cosine function of operator [13]. Our proofs are an

adaptation of those carried out by Kantorovitz in [5].
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Let X be a Fréchet space. It is well known [9, Theorem 1.24] that the topol-

ogy of X is determined by a metric d that satisfies the following properties:

(a) The metric d is invariant under translations.

(b) The open balls centered at 0 are balanced.

(c) The open balls are convex.

In this case we will say that d satisfies the condition (F).

Throughout this paper we will denote by X a Fréchet space whose topology

is determined by a metric ¿z" that satisfies the condition (F). For an arbitrary

linear operator A with domain DÍA) in X we denote by pi A) the resolvent set

of A . We will say that a bounded linear operator U defined on X commutes

with A if UÍDÍA)) C DÍA) and If Ax = AUx, for every x G DÍA). For the
operators A such that pi A) /Owe know that U commutes with A if and

only if U commutes with the resolvent operator P(A, A), for some X G píA).

Moreover, if Z is a subspace of X then Az, called the part of A in Z , will

denote the restriction of A to the domain DiAz) = {x G DÍA) n Z: Ax G Z}.

Furthermore, if Z is a Fréchet space contained in X we use the notation

Z <-> X to represent that the inclusion of Z into X is continuous. Finally, we

denote by S'iX) the space of bounded linear operators on X.

2. The first order abstract Cauchy problem

Let A be a linear operator in X with domain DÍA). We assume that every

X > 0 is included in the resolvent set píA) of A, and we introduce the set

& = {UU ¿jRßj » A) : k G N, Xj > 0} U {/}.
Let <I> be the function defined by

<D(x, y) = sup{¿i(Px, Py) : P g 30},

for every x, y G X. Let Y be the set of elements x G X such that <P(x, 0) <

+00 . We begin by summarizing some elementary properties of O and Y .

Proposition 2.1. The following properties hold.

(i) The set Y is a linear subspace of X, and the function Q> on Y is a metric

that satisfies the condition (F). Furthermore, the metric <J> maforizes the metric

d and for every P G ¿P and x, y G Y,

(1) <D(Px,Py)<<D(x,y).

(ii) The set Y with the topology induced by O is a Fréchet space.

(iii) The space Y is invariant for every continuous linear operator U that

commutes with A.

Proof. The assertion (i) is an easy consequence of the properties of the metric

d and the definition of O. In particular, the relation ( 1 ) follows from the fact

that ¿P is closed in S'iX) for the composition of operators.

On the other hand, for the properties of <P it follows that Y is a locally

convex space. To prove the completeness, we consider a Cauchy sequence (y„)„

in Y. It is clear that (y„)„ is also a Cauchy sequence in X that satisfies the

condition: given e > 0 there exists zzo G N such that

(2) 0(y„ , ym) = sup diPyn, Pym) < s,
peâ°
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for every m, n > no. Let x be the limit of (y„)„ in X . Then, for each Peâ0

and n > no, from (2) we obtain

diPyn , Px) = lim diPyn , Pym) < e,
m—>oo

which proves that x G Y and the sequence (y«)„ converges to x in the space

Y. This completes the proof of (ii).
Finally, if U is a bounded linear operator that commutes with A then U

commutes with every operator P G 3o . Consequently, for every x e Y the set

{Plfx:Pc9°} = {UPx: P G 30} is bounded for the metric d . This implies
that <P(t7x, 0) < +00 and Ux e Y.

We will also need the following result.

Lemma 2.1. Let W be a Fréchet space and B be a linear operator in W such

that every X> 0 is included in piB) and the set of operators {XnRiX, B)n : X >

0, n G N} is equicontinuous. Then there exists a metric dx on W that is

compatible with the topology of W, satisfies the condition (F), and

dxíXRÍX,B)w,0) <dxiw,0)

for every X > 0 and w G W.

Proof. We may assume that the topology of W is determined by a set {pn : n G

N} of seminorms, which may be chosen so that p„ix) < pn+x (x), for all x G W

and zz g N .
Since {XmRÍX, B)m : X > 0 and m G N} is an equicontinuous set of bounded

operators, for each n G N there exists a positive constant M„ such that

PníXmRÍX,B)mx)<Mnpnix)

for all X > 0, m G N and every x G W.
On the other hand, the argument used in the proof of Lemma 5.1, [8, Chapter

I] also applies to seminorms. Therefore, we may affirm that, for each n G N,

there exists a seminorm q„ on W that is equivalent to the seminorm pn and

satisfies the properties

(3) p„ix) < q„ix) < MnPníX) ,       Vx G W

and

(4) q„iXRiX,B)x)<qnix),    VxeW,VX>0.

Let Vn be the open ball {x g W: ¿?„(x) < 1/2"} ; then {V„ : n G N} is a base
at 0 formed by balanced sets such that Vn+X + Vn+X ç V„ . In these conditions we

may apply the proceeding used in the proof of Theorem 1.24 in [9]. The metric

dx obtained in this form satisfies all the statements of the lemma. In fact,

the condition (F) follows directly from the result already mentioned. Hence it

remains only to prove (4). Let Air) and / be as in the construction carried

out in [9, Theorem 1.24]. For each x G W, if /(x) < r, with

«0

r = £c„(r)2-"

n=l
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then x e Air). This means that there exists v„ g Vn, for every ¿z = l,2,...,

«o such that x = ¿Z"°=x cnir)v„ ■ Consequently, for each X > 0,

«0

XRÍX, B)x = ^Cnír)XRÍX, B)v„.
n=l

But, since

qnÍXRÍX,B)v„)<qnív„)< 1/2",

it follows that XRÍX, B)v„ g Vn and XRÍX, B)x G Air). Now, from the defini-
tion of dx we obtain that

dxÍXRÍX, B)x, 0) = fíXRÍX, B)x) < r.

Hence

dx ÍXRÍX, B)x, 0) < fix) = dx (x, 0),

which completes the proof.    □

We now state the main result of this section, which is an extension to Fréchet

spaces of Theorem 2.4 in [5]. In this statement Z will denote the space DiAy),

where the closure is taken in ( Y, 3>).

Theorem 2.1. The operator Az is the infinitesimal generator of an equicontinu-

ous semigroup of class Co on Z. Moreover, Z is maximal in the following

sense. If W is a Fréchet space that W <-* X and the operator Aw gen-
erates an equicontinuous semigroup of class C0  ozz   W  then  W <-> Z  and

DÍAW)CDÍAZ).

Proof. We start by showing that X G píAz), for every X > 0. If x G DiAy)
then x G DÍA) n Y and Ax G Y. Since RÍX, A) is a bounded linear operator,

it follows that RÍX, A)x G DÍA) n T; and since ARÍX, A)x = XRÍX, A)x -
x belongs to Y, we obtain that P(A, A)ÍDÍAY)) ç DÍAY). Now, using the
continuity of the operator P(A, A) with respect to the metric <I>, we infer that

RÍX, A)ÍZ) = RÍX, A)(DJÂÇ)) C DjÂÇ) = Z.

Consequently X G piAz) and RÍX, Az) = RÍX, A)\z ■
Next we will prove that the domain of Az is dense in Z . Let y G DiAy).

Then XRÍX, A)y —► y, as X —> +oo, for the metric <t>. In fact, from the

properties of O it follows that

&ÍXRÍX,A)y-y,0) = <D(P(A, A)Ay, 0)

= CPÍXRÍX, A), Ay/X, 0) < ®iAy/X, 0),

which shows the assertion. This implies that DiAy) is dense in DiAy). It is

easy to see that DiAY) is included in DiAz) so that DiAz) is dense in Z .

On the other hand, for every n G N, X > 0, and every x, y G Z , it follows

from (1) that

<D(A"P(A, Az)nx, X"RiX, Az)ny) = <D(Px, Py) < 0(x, y),

where P = A"P(A, A)n. Therefore, the set of operators {XnRiX, Az)n: X >

0, n G N} is equicontinuous and from the Miyadera theorem [7, Theorem

5.2] we may assert that Az is the infinitesimal generator of an equicontinuous

semigroup of class Co on Z .
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We will now prove the maximality property of Z . In the remainder of the

proof, we suppose that dx is a metric on W that satisfies all of the conditions

established in Lemma 2.1. From the Miyadera theorem [7] we know that the

interval (0, +oo) ç píAw), and it is clear that RÍX, Aw)w = P(A, A)w , for

every X > 0 and w G W. Hence, if P = f]jL, X¡RÍX¡, A) is an element of ¿P

then PÍW) ç W and Pw = T\kj=l XjRiXj, Aw)w , for each w G W. Since

dxiPw,0) = dx lf[XjRiXj,A)w,o\ <dxiw,0),

it follows that the set {Pw: P G ¿P} is bounded in W. Knowing that W is
continuously included in X we conclude that {Pw : P e 3P} is a bounded set

in X, for all w g Y. This shows that W ç Y. The same argument allow

us to obtain that if S is a bounded subset of W, then the set {Pw : P G ¿? ,

w e S} is also bounded in X. Thus, S is bounded in Y for the metric <ï>,
which implies that W is continuously included in Y. Since DiAw) Ç. DiAy)

and DiAw) is dense in W, we obtain that

-w
W = DÍAW)    CDÍAw)   QDÍAy)   = Z.

This finally yields W ^ Z and DÍAW) ç DÍAZ).

Remark. Concerning the nontriviality of space Z , we may prove that Z con-
tains the eigenvectors corresponding to eigenvalues a of A with Re (a) < 0.

In fact, if Ax = ax then RÍX ; A)x = (A - a)~'x, for every X > 0. Thus, for

every P = fL , XjRiXj, A) we obtain

diPx,0) = d   ITt^^*'0    <dix,0),

which implies that x G Y. Since x G DiAy) then x G Z .

Example. As an example that shows how Theorem 2.1 can be applied, we con-

sider the space X = C(-oo, 0; C) provided with the compact-open topol-

ogy and let L be a continuous linear form on X such that the function

/(A) = Liexe) satisfies the following conditions:

(a) /(0) = 0;
(b) fiX) ji X, for every X > 0 ;
(c) X/ÍX - fiX)) -* +00 , as X -» 0+ , X G R.

Let A be the operator defined by

AxiO) = dx/dd

on DÍA) = {x G C1 (-oo, 0 ; C) : x'(0) = L(x)} .
It is easy to see that X = 0 G oPÍA) so that the space Z ^ {0} . Furthermore

the interval (0, +oo) ç píA) and for each X > 0 the resolvent operator RÍX, A)

is given by

ext
RÍX,A)gít) = J-mlgíO)-L j eMe-r)g^dT   I _ j gHt-T)g(T)dt
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for every g c X and t < 0. Therefore {XRÍX, A): X > 0} is not an equicon-

tinuous set of bounded operators, which shows that Z ^ X.

A specific example is given by the linear form Lítp) = cpía) -tpía - 1), where

¿z<0.

3. The second order abstract Cauchy problem

Let A be a linear operator in X with domain DÍA). We assume that

the resolvent P(A, A) is a bounded operator on X for every X > 0. We

will use the notation P(A) = XRÍX2, A) and introduce the set of operators

&> = {(/l"+1/zz!)P_(A)("' : X > 0, n G N} U {/}.
Proceeding as in §2, let <P be the function defined by

0(x, y) = sup{¿/(Px, Py) : P G 9a}

for every x, y G X, and let Y be the set {x £ X: <P(x, 0) < +00} . It is easy

to see that this definition has the same properties established in Proposition 2.1.

Therefore, we omit it the proof.

Proposition 3.1. The properties established in Proposition 2.1 hold.

For the next theorem we need the following result.

Lemma 3.1. Let W be a Fréchet space and B be a linear operator in W, which

generates an equicontinuous cosine function of class Co on W. Let ipn)n be

a family of seminorms that generates the topology of W. For every X > 0, we

set FiX) = XRÍX2, B). Then there exists a family of seminorms iqn)„ and a

sequence of constants ÍMn)„ suchthat

(5) Pnix) < q„ix) < Mnp„ix)

and

(6) qn(^rFWiX)x\<qn[x),

for every n G N, X > 0, and x e W.

Proof. Let C be the cosine function of operators generated by B . Since the set

{Cit): ieR} is equicontinuous on W, for each n G N there exists Mn > 0

such that

(7) PníCit)x) < MnPníX)

for every x G W and t G R. Thus, we may define

(8) q„ix) = sup{PniCit)x) :t£R}

for each x G W and n G N. Clearly q„ is a seminorm in W and (5) follows

from (7) and the condition C(0) = /.

On the other hand, ¿7„(C(i)x) < q»ix), for all s eR and x e W. In fact,
using the properties of the cosine functions we may write

¿7„(C(s)x) = sup{p„ÍCÍt)Cís)x): t G R}

= sup{zz„(iC(¿* + s)x + \Cit - s)x) :iel}

< ^sup{p„(C(w)x): zz g R} + ±sup/?„(C(î;)x): v £R = <?„(x).
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It is clear that the family of seminorms q„ , defined according to the previous

procedure, generates the topology of W. Now proceeding as in the proof of

Theorem 2.1 in [3] we obtain (6).
It is easy to see that the same arguments used in the proof of Lemma 2.1

allow us to conclude that there exists a metric dx compatible with the topology
of W that verifies the condition (F) and

(9) dx(^F^\X)x,0Sj<dxix,0)

for every zz G N, X > 0, and x G W.

In the next result V will denote the space DiAy), where the closure is taken

in (T,í>).

Theorem 3.1. The operator Ay is the infinitesimal generator of an equicontinu-

ous cosine function on V. Furthermore, V is maximal in the following sense :

if W is a Fréchet space such that W <-► X and the operator Aw is the infinites-

imal generator of an equicontinuous cosine function on W then W^V and

DiAw) Q DiAy).

Proof. The demonstration in this case is very similar of that carried out in the

Theorem 2.1. By this reason we shall only sketch the proof. Initially, using a

theorem due to Fattorini [3] instead of the theorem of Miyadera we may prove

that A v is the infinitesimal generator of an equicontinuous cosine functions of

operators on V.

Next, in order to prove the maximality property of V we use Lemma 3.1

with the operator B = Aw ■ Thus, we may assume defined on W a metric dx

that satisfies the condition (F) and the inequality (9). Now, the same argument

used in the proof of Theorem 2.1 allows us to conclude that W <-> V and

DiAw) Ç DiAy).

Concerning this theorem, it is worth mentioning that V is included in Z .

In fact, it is well known [3] that every infinitesimal generator of a strongly con-

tinuous cosine function is also a generator of a strongly continuous semigroup

of operators.
On the other hand, concerning the nontriviality of V, we may prove that it

contains the eigenvectors corresponding to nonpositive eigenvalues of A .

Remark. We have already mentioned that the well posedness of the ACP of

first and second order, in a Fréchet space X, is directly related to the theory

of one parameter semigroups and cosine functions of operators, respectively.

However, this relation is also true when X is a sequentially complete locally

convex space (see Konishi [6] and Yosida [12]). By this reason, we expect that

our results can be extended to include locally equicontinuous semigroups and

cosine functions of operators on sequentially complete locally convex spaces.
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