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RADON-NIKODYM PROPERTY IN
SYMMETRIC SPACES OF MEASURABLE OPERATORS

XU QUANHUA

(Communicated by William J. Davis)

Abstract. Let £ be a rearrangement invariant function space on (0, oo) with

the RNP. Let (M, x) be a von Neumann algebra with a faithful normal semifi-

nite trace r . It is proved that the associated symmetric space Le(M , x) of

measurable operators has the RNP.

1. Introduction

The aim of this note is to solve a problem arising in a previous work [ 10]

concerning the Radon-Nikodym property (RNP) in symmetric spaces of mea-

surable operators. For stating our result, we introduce the necessary definitions

and notations (for unexplained notions, see [5, 6, 9]). We also refer the reader

to [2] for the definition and the elementary properties of the RNP.

Let ÍM, x) be a semifinite von Neumann algebra acting on a Hubert space

H, with a faithful normal semifinite trace x. Let M be the space of all mea-

surable operators with respect to (A/, t) in the sense of [7], equipped with

the measure topology defined there. For a £ M and t > 0 the ith s-number

(singular number) of ¿z is defined by (cf. [3])

p,ia) = inf{||¿z<?|| : e is a projection in M with t(1 - e) < t}.

The function t -» /¿,(¿z) on (0, oo) is denoted by pía). This is a positive

nonincreasing function on (0, oo). Note that /¿(a) = pía*) = pi\a\), \a\ being
the absolute value of ¿z. Recall the following useful formula for /¿((¿z) in terms

of the spectral measures (cf. [3])

(1) p,ía) = inf{s >0\Xsia)<t},

where As(¿z) = r(e(í oo)(|¿z|)), ¿?(Ji0o)(|¿z|) being the spectral projection of \a\

corresponding to the interval (s, 00) for s > 0. It follows immediately that

Ptia) = 0   for / > r(supp(¿z)),

where supp(¿z), the support of ¿2, is the smallest projection e in M such that

ae = a . In particular, if x is finite, i.e., t(1) < 00 , then for any a e M

(2) Ptía) = 0   fort>xíl).
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Now let E be a rearrangement invariant (r.i.) function space on (0, oo) in

the sense of [6]. Then we define the symmetric space of measurable operators

associated with E and (¿Vf, t) as follows:

LEiM, x) = {a eM\pia) e E}

and

\\a\\LE(M,z) = \\a\\E = \\PÍa)\\E, a g L£(M, x).

It is an elementary fact that ÍLeÍM, x), ||-||) is a Banach space (cf. [10, Lemma

4.1]). Moreover, we have ||¿z||£ = ||¿z*|| = || \a\ \\e for any a G LEiM, x). If

E = LPiO, oo) (0 < p < oo), then LeÍM , x), denoted usually by LPiM, x)

in this case, is simply the usual noncommutative Lp -space associated with a

semifinite von Neumann algebra. Note that Loo (A/, r) is just M equipped

with the operator norm.

If x is finite, by (2) we have /¿,(¿z) = 0 for t G [t(1) , oo) (¿z g M) ; so that

in this case E can be taken as an r.i. function space on (0, t(1)) .

It would be natural to expect properties of a symmetric space of measurable

operators to reflect the properties of the corresponding r.i. function space. Thus

we proved in [ 11 ] that uniform convexity and uniform PL-convexity pass from

E to LeÍM , x), and in [10] that the same phenomenon occurs for the analytic

Radon-Nikodym property and the uniform //-convexity in the sense of [12].

A related problem arising from [10] is to know whether the RNP also passes

from E to LEiM, x). We answer this question by the following result.

Theorem. Let E be an r.i. function space on (0, oo) having the RNP. Then for

any semifinite von Neumann algebra (¿Vf, t) , LeÍM , x) possesses the RNP.

It is worthwhile to note that a similar result for unitary ideals is easy (of

course, our theorem contains this special case). In that case, E is a symmetric

Banach sequence space on N and (¿Vf, t) is just (P(//), tr), where /?(//) is

the space of all bounded operators on a separable Hubert space H and tr is

the usual trace on /?(//). Traditionally, L£(ß(//), tr) is denoted by Ce , the

unitary ideal associated with E. If E has the RNP, E fails to contain Co.

Then it follows easily that the canonical basis is a boundedly complete basis for

E with a basis constant 1. Therefore E is order isometric to the dual of E', E'

being the closed subspace of the dual E* of E generated by all finite sequences

(cf. [5]). Now by a well-known result from the theory of unitary ideals (cf. [4,

Theorem III. 12.2]), we have

ÍCe')* = C(E>y = Ce ■

Note also that Ce is separable because E is separable. Hence Ce is a separable

dual, so it has the RNP. This simple reasoning also shows that for symmetric

Banach sequence spaces and unitary ideals, the RNP is equivalent to the absence

of Co in these spaces. Therefore in these spaces the RNP and the analytic RNP

coincide.

For further results about symmetric spaces of measurable operators the reader

is referred to [10].

2. Proof

Now we proceed to prove the theorem. Our proof relies heavily on the idea

in the proof of the corresponding result for the analytic RNP in [10]. In the
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following, E always denotes an r.i. function space on (0, oo) and (M, x), a

semifinite von Neumann algebra on H, with a faithful normal semifinite trace

x.

As in [10], we first consider the finite trace case.

Lemma 1. Suppose t(1) = 1. Let F be an order continuous r.i. function space

on (0, 1 ). Then

ÍLFÍM,x))* = LF.ÍM,x).

Proof. Note first that the order continuity of F implies that F* consists only

of measurable functions on (0, 1) (cf. [6]). Hence F* is also an r.i. function

space on (0, 1), so LF-iM, x) is well defined.
The inclusion

LF.ÍM, x) c ÍLfÍM, x))*    (of norm < 1)

is easily seen. Indeed, by [3, Theorem 4.2], for any b G Lp-ÍM, x) and any
a G LpiM, x), we have

/   ptíab)dt< ¡   ptía)ptíb)dt.
Jo Jo

Thus xíab) is well defined and

\xiab)\< I  ptia)ptib)dt.
Jo

It follows that the linear functional /: ¿z >->■ xíab) defined on LFÍM, x) is

continuous and of norm < ||/¿(o)||f. = ||¿>||f- .
For the converse inclusion we take / G ÍLpíM, x))*. Then we must show

that / is defined by an element b G Lp. (M, t) as above and that the norm of

/ in ÍLpíM, x))* is less or equal to ||<?||Lf.(Af,T). For this we first show that /

is in the predual of ¿Vf, that is, / is an element of Li (¿Vf, t) (it is well known

that iLxiM, x))* = LooiM, x) = M).
Because F is an r.i. function space on (0, 1), we have (cf. [6])

Loo(0, 1) c F c Li(0, 1)    (inclusions of norm < 1).

It follows that

M c LpiM, x) c Li (¿Vf, t)    (inclusions of norm <1).

Therefore the continuous linear functional / on LpiM, x) also defined a con-

tinuous linear functional on M, that is, / G ¿Vf*. In order to show that / is in

the predual of ¿Vf, by a well-known result from the theory of operator algebras

(cf. [9, Corollary IH.3.11]), it suffices to show the following: For any orthogonal

family {e¡}¡€¡ of projections in M

(3) /(5>) =£/(*).

Equation (3) immediately follows from the following lemma.
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Lemma 2. Let {e,},e/ be an orthogonal family of projections of M. Then
YLi£iei converges in LpiM, x).

Proof. For each finite subset J of I, let hj = 52;6y e¡, and let kj = £,- g y e¡
(convergence in the strong operator topology). Then the decreasing net {kj : J

finite subset of /} converges to 0 in the strong operator topology. Since x is

normal and finite, the net {t(/c/)} converges to 0. Since F is order continuous,

{ll>t[o,T(fc.,)]llí'} -* 0> Xw being the indicator function of a subset w . As pikj) =

X[o,z{kj)] > {kj} —► 0 in LpiM, x). This proves Lemma 2.

End of the proof of Lemma 1. Now / is in the predual of M ; namely, there

exists a measurable operator b G Lx (Af, x) such that

(4) lia) = xíab),        Va e M.

Consequently

(5) |T(¿z/3)|<||/||||a||F,        VaeM.

Now by [10, Lemma 4.5], ¿Vf is dense in LpiM, x); therefore, for any a G

LpiM, x), xíab) is well defined and (4) and (5) hold for a G LpiM, x). We
next show that b G LF>ÍM, x) and ||è||f. < ||/||.

Let b = u\b\ be the polar decomposition of b and \b\ = /0°° tdet be the

spectral decomposition of \b\. Let ët = eßl(b)^o (' > 0, eo-rj — !)• Then \b\
admits the following Schmidt decomposition (cf. [8])

\b\= [ ptib)dët.
Jo

Let x be a nonincreasing positive function in F such that x is constant in

the intervals where pib) is constant. Define

ff1 \
a =     /   xit)dêt    -u*.

Then it is easy to check that ¿z G LpiM, x) and ||a||f < ||x||f . We also have

/  xit)ptib)dt = x I  /  xit)dêf      ptib)dët\ =xiab).

Then by (5)

Jo

Taking the supremum in the above inequalities over all x satisfying the previous

property and  \\x\\F < 1, we deduce that pib) G F*  and  ||/¿(o)||f« < ||/||.
Consequently,  b G LF.ÍM,x)  and  \\b\\LF.(M,x) < ¥\\ ■   This concludes the
proof of Lemma 1.

Lemma 3. Assume that x is finite and E has the RNP. Then LeÍM , x) has

the RNP.

Proof. After a trivial normalization, we can assume t(1) = 1 . Then we can

regard E as an r.i. function space on (0, 1). The RNP of E implies that

E is not isomorphic to Li (0, 1) and that E is maximal in the sense of [6].
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Consequently, E = F*, where F is an order continuous r.i. function space on

(0, 1) (cf. [6]). Then by Lemma 1

LeÍM, x) = ÍLpíM, x))*.

If LeÍM, x) was separable, then LFiM, x), as a separable dual, would have

the RNP. But unfortunately, LEiM, x) is in general nonseparable. Therefore,

we must do something else in order to prove the RNP of LFiM, x).

Now let X be a separable closed subspace of LEÍM, x). We show that X

is isometric to a closed subspace of a separable dual, from which [2, Corollary

III.3.5] and Lemma 3 follows.
Let {a„}n>o be a dense sequence in X ; by [10, Lemma 4.3], M is dense

in LeÍM , x). Then by approximating a„ by elements in M, we may assume

a„ e M for any n > 0. Now let M be the von Neumann subalgebra of M

generated by 1 and all the ¿Vs. Let f be the restriction of x to M. Clearly, f

is a faithful normal finite trace on M. It is also clear that LFÍM, x) is naturally

identified with a closed subspace of LEiM, x) and X a closed subspace of

LeÍM, x). Now by Lemma 1, LFÍM, x) is a dual. Furthermore, by [10,

Lemma 5.6], LFiM, x) is separable. Thus, X is a closed subspace of the

separable dual LFiM, t) , proving Lemma 3.

Lemma 3 proves the theorem in the finite trace case. We reduce the general

case to the finite trace case by using the semifiniteness of t . The following

argument is similar to the corresponding part in the proof of Theorem 5.1 in

[10]. We outline it only. In the following, E is an r.i. function space on (0, oo)

with the RNP.
We use the following characterization of the RNP due to Bukhvalov and

Danilevich [1]. Let X be a Banach space. Let hooiX) denote the space of all

bounded harmonic X-values functions in the unit disc of the complex plane.

Then X has the RNP iff every function / g /Zoo i%) admits almost everywhere

radial limits in X on the unit circle T, that is, limr_i fire'6) exists in X

almost everywhere on T.

Let / G hooíLEÍM, t)) . We show that / admit almost everywhere radial

limits in LeÍM , x) on T, from which the theorem follows. Write

fireie) = Y. anrweine,        0 <r < 1, 0 <6 <2n,

nez

where ¿z„ G LEÍM, x) in G Z) and limsup„_±00 HíZnllg" < 1 . By the semifinite-
ness of t we find an orthogonal family {c,}i6/ of projections in M such that

r(e\) < oo for every i g / and such that

1 = £ e¡   (convergence in the strong operator topology).

i€l

By [10, Lemma 5.7], for every n G Z, {i e I : \\ane¡\\E ^ 0 or ||c,a„||£ ^ 0}

is at most countable; so that there exists an at most countable subset {ek}k>0

of {¿?,},ez such that ||e>¿z„||£ / 0 or ||a«^fc||e ¥" 0 for some n e Z. Let

e = Y¿k>oek ■ Then we have efiz) = fiz)e = /(z) (z g D). Therefore

replacing M by eMe and x by its restriction to eMe, we can assume e = 1 .

For j > 0, k > 0, set ejk = e¡ V ek (maximum taken in the lattice of all the
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projections in ¿Vf). Now let Me.k = e¡kMe¡k and xe¡k be the restriction of x

to Me U > 0, k > 0). xe.k is a finite trace on Me k. For j > 0, k > 0

consider /^(z) = ejfiz)ek (zgD). Regarded as a function with values in

LEiMejk, t«,. J , fjk G hooíLEÍMe.k, Xejk)) and

ll/^(z)lk£(Mf.t,T,M) < II/(^)IIl£(m,t),       ^g£».

By Lemma 3, LFiMejk, xe k) has the RNP; so in LFiMe.k, xe.k)

limfjkire'e) = cpjkie'e)   almost everywhere on T.

We can evidently extend the boundary function cpik to a function with values

in LeÍM, x). This new function is still denoted by cpjk . Then it satisfies

ejtpjkie'6) = cpjkiel6)ek = fjkield)   almost everywhere on T;

furthermore, the above almost everywhere radial limits also exist in LeÍM , x).

Then by [10, Lemma 5.7], we can show that JZ>>o Si>o fiki?'6) converges in

LeÍM , x) almost everywhere on T (cf. [10] for more details). Let

^,e) = E£M^0)>        O<0<2tt.
j>OA:>0

Then tp is a bounded measurable function on T with values in LeÍM, x) since

for any m > 0, n>0

ess sup
0€T ;=o k=o

LE(M,x)

< sup
z€D

££/,*(*)

¿=0 k=0
LE(M,x)

< sup||/(z)||L£(M;T).
zeD

Let

íreie) = i    tpie^Prie - n)^       (0 < r < 1, 0 < 6 < 2n)
Jo 2n

be the Poisson integral of tp in the unit disc, Pr being the Poisson kernel. By

the dominated convergence theorem

F(z) = ££^(z)>    zeD>

j>0k>0

where Fjk is the Poisson integral of cpjk   ij > 0, k > 0). Since <Pjk is the

almost everywhere radial limit of fjk , Fjk = fjk ; so that

F(z) = ££-Wz)>    zeD-
j>0k>0

On the other hand, it is clear that

^z) = ££^(z)>    zeD-

j>0k>0
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Consequently, F = f. Hence / is the Poisson integral of cp . Therefore

lim fire'6) = <pie'e)   in LEÍM, x) almost everywhere on T,
r—>1

which completes the proof of the theorem.
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