FIXED POINTS FOR DISCONTINUOUS QUASIMONOTONE MAPS IN SEQUENCE SPACES

SABINA SCHMIDT

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. In [2] Hu gives a fixed point theorem for discontinuous quasimonotone increasing maps in $X = \mathbb{R}^n$. We will answer the question in [2] as to whether this result can be extended to $X = l^p$, $1 \le p \le \infty$.

Let the Banach spaces $X = \mathbb{R}^n$, c_0 , and l^p , $1 \le p \le \infty$, be ordered by the cone $K = \{x = (x_i)_{i \in I} \in X : x_i \ge 0\}$, where $I = \{1, \ldots, n\}$ or $I = \mathbb{N}$, respectively. Then (X, K) is order complete, i.e., if a subset A of X has an upper bound, then A has a least upper bound, which we denote by $\sup A$.

For $u, v \in X$, $u \le v$, we set $[u, v] = \{z \in X : u \le z \le v\}$. It is well known (theorem of Tarski; see [4]) that for each increasing map $M: [u, v] \to [u, v]$ the points $\overline{x} = \sup\{x \in [u, v] : x \le Mx\}$ and $\underline{x} = \inf\{x \in [u, v] : x \ge Mx\}$ are fixed points of M.

For a function $f = (f_i)_{i \in I} : X \to X$ we define for $x \in X$, in analogy to the notation in [2],

$$D_{\pm}f_i(x) = \liminf_{t \to 0 \pm} \frac{1}{t} (f_i(x + te^i) - f_i(x)),$$

$$D^{\pm}f_i(x) = \limsup_{t \to 0 \pm} \frac{1}{t} (f_i(x + te^i) - f_i(x)),$$

where e^i , $i \in I$, are the elements of X with components $e^i_j = 1$ for i = j, $e^i_j = 0$ for $i \neq j$.

Theorem. Let $u, v \in X$, $u \le v$, and $f = (f_i)_{i \in I}$: $[u, v] \to X$ be a function with the following properties:

- (1) $f_i(x) < f_i(y)$ for $x, y \in [u, v]$ with $x \le y$ and $x_i = y_i$, $i \in I$;
- (2) $\min\{D_{-}f_{i}(x), D_{+}f_{i}(x)\} > -\infty \text{ for } x \in [u, v], i \in I;$
- (3)

$$u_i \le f_i(x + (u_i - x_i)e^i), \quad v_i \ge f_i(x + (v_i - x_i)e^i) \quad \text{for } x \in [u, v], \ i \in I.$$

Then f has a greatest fixed point \overline{x} and a smallest fixed point \underline{x} , and

(4)
$$\overline{x} = \sup\{x \in [u, v] : x \le f(x)\}, \quad \underline{x} = \inf\{x \in [u, v] : x \ge f(x)\}.$$

Received by the editors July 26, 1990 and, in revised form, November 27, 1990. 1980 Mathematics Subject Classification (1985 Revision). Primary 47H10, 47H05.

In case $X = \mathbb{R}^n$ this result is exactly [2, Theorem 2].

Proof. For each $x \in X$, $i \in I$ define

$$g_i^x(t) = f_i(x + (t - x_i)e^i)$$
 for $t \in [u_i, v_i]$.

From (2) and (3) we get $\min\{D_{-}g_{i}^{x}(t), D_{+}g_{i}^{x}(t)\} > -\infty$ for $t \in [u_{i}, v_{i}]$ and $u_{i} \leq g_{i}^{x}(u_{i}), v_{i} \geq g_{i}^{x}(v_{i})$.

Hence by [2, Corollary 1] the function $g_i^x(t)$ has a greatest fixed point $M_i x$ and a smallest fixed point $m_i x$ and

(5)
$$M_{i}x = \sup\{t \in [u_{i}, v_{i}] : t \leq g_{i}^{x}(t)\}, \\ m_{i}x = \inf\{t \in [u_{i}, v_{i}] : t \geq g_{i}^{x}(t)\}.$$

Since, by (1), $g_i^x(t) \le g_i^y(t)$ for each pair $x, y \in [u, v]$ with $x \le y$, we conclude that $M_i x \le M_i y$, $m_i x \le m_i y$ for $x, y \in [u, v]$ with $x \le y$. Therefore $Mx = (M_i x)_{i \in I}$ defines an increasing map $M: [u, v] \to [u, v]$.

Let $\overline{x} = \sup\{x \in [u, v] : x \leq Mx\}$ be the greatest fixed point of M. Combining the equations $\overline{x}_i = M_i \overline{x}$ and $g_i^{\overline{x}}(M_i \overline{x})$, we get $\overline{x}_i = g_i^{\overline{x}}(\overline{x}_i) = f_i(\overline{x})$ for each $i \in I$. Therefore \overline{x} is also a fixed point of f. Since $x \leq f(x)$ implies $x \leq Mx$ by (5), we claim $x \leq \overline{x}$ and hence $\overline{x} = \sup\{x \in [u, v] : x \leq f(x)\}$.

In a similar way we can prove that the smallest fixed point \underline{x} of the increasing map $m: [u, v] \to [u, v]$ is the smallest fixed point of f and that the second equation in (4) is fulfilled.

Corollary. Let $u, v \in X$, $u \le v$, and $f = (f_i)_{i \in I}$: $[u, v] \to X$ be a function with the following properties:

$$f_i(x) \ge f_i(y)$$
 for $x, y \in [u, v]$ with $x \le y$ and $x_i = y_i, i \in I$;
 $\max\{D^-f_i(x), D^+f_i(x)\} < \infty$ for $x \in [u, v], i \in I$;

$$u_i \ge f_i(x + (u_i - x_i)e^i), \quad v_i \le f_i(x + (v_i - x_i)e^i) \quad \text{for } x \in [u, v], \ i \in I.$$

Then f has a greatest fixed point \overline{x} and a smallest fixed point \underline{x} and

$$\overline{x} = \sup\{x \in [u, v] : x \ge f(x)\}, \qquad \underline{x} = \inf\{x \in [u, v] : x \le f(x)\}.$$

Remarks. (1) In infinite-dimensional Banach spaces X a function $f\colon X\to X$ is quasimonotone increasing if $x,y\in X$, $x\le y$, $\varphi\in K^*$, $\varphi(x)=\varphi(y)$ implies $\varphi(f(x))\le \varphi(f(y))$, where $K^*=\{\varphi\in X^*:\varphi(x)\ge 0 \text{ for all } x\in K\}$ (see Volkmann [3]). For $X=\mathbb{R}^n$, c_0 , or l^p , $1\le p<\infty$, condition (1) is the same as quasimonotonicity. In case $X=l^\infty$ condition (1), even together with (2), is weaker than quasimonotonicity. Choose $\varphi\in K^*$ with $\varphi(x)=0$ for $x\in c_0$ and $\varphi(e)=1$ for $e=(e_n)_{n\in\mathbb{N}}$ with $e_n=1$ for all $n\in\mathbb{N}$. For $x=(x_n)_{n\in\mathbb{N}}\in l^\infty$, define

$$f_n(x) = \begin{cases} 1 & \text{for } x_n \le 0, \\ 1 - nx_n & \text{for } 0 \le x_x \le \frac{1}{n}, \\ 0 & \text{for } x_n \le \frac{1}{n}, \end{cases}$$

Then $f = (f_n)_{n \in \mathbb{N}} : l^{\infty} \to l^{\infty}$ satisfies (1) and (3), but is not quasimonotone increasing.

(2) In $X = l^{\infty}$, methods analogous to these used in this paper also lead to existence theorems for ordinary differential equations with quasimonotone right-hand side (see [1]).

REFERENCES

- 1. A. Chaljub-Simon and P. Volkmann, Un théorème d'existence et de comparison pour des équations différentielles dans les espaces de fonctions bornées, C.R. Acad. Sci. Paris Ser. I Math. (to appear).
- 2. S.-C. Hu, Fixed points for discontinuous quasi-monotone maps in \mathbb{R}^n , Proc. Amer. Math. Soc. 104 (1988), 1111-1114.
- 3. P. Volkmann, Gewöhnliche Differentialgleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, Math. Z. 127 (1972), 157-164.
- 4. E. Zeidler, Nonlinear functional analysis and its applications, vol. I, Springer-Verlag, Berlin and New York, 1986.

Fakultät für Mathematik, Universität Karlsruhe, Kaiserstrasse 12, D-7500 Karlsruhe 1, Germany