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ABSTRACT. In [2] Hu gives a fixed point theorem for discontinuous quasimono-
tone increasing maps in X = R”. We will answer the question in [2] as to
whether this result can be extendedto X =/7, 1<p <.

Let the Banach spaces X = R”, ¢y, and /’, 1 < p < oo, be ordered by
the cone K = {x = (x;)ier € X : x; > 0}, where I = {l,...,n} or I =N,
respectively. Then (X, K) is order complete, i.e., if a subset 4 of X has an
upper bound, then A4 has a least upper bound, which we denote by sup 4.

Foru,ve X, u<v,weset [u,vl={z€ X:u<z<wv}. Itiswell known
(theorem of Tarski; see [4]) that for each increasing map M: [u, v] — [u, v]
the points X = sup{x € [u, v]: x < Mx} and x = inf{x € [u, v]: x > Mx}
are fixed points of M .

For a function f = (f;)ie;: X — X we define for x € X, in analogy to the
notation in [2],

..ol :
Dy fi(x) = liminf - (fi(x + te") - fi(x)),
D% fi(x) = limsup +(i(x + te) ~ fi(x)),
t—0t
where ', i € I, are the elements of X with components e! =1 for i = j,
ei=0 for i#j.
Theorem. Let u,v e X, u<v, and f = (f)ier: [u, v] = X be a function
with the following properties:
(1)  filx) < fiy) forx,ye€lu,vlwithx<yandx;=y;, i€l
(2) min{D_ fi(x), Dy fi(x)} > —o0 for x € [u,v], i€l;
(3)

ui < filx + (i —xi)e'), vi> filx+(vi—x)e') forxelu,v], iel.
Then f has a greatest fixed point X and a smallest fixed point x, and
(4) X=sup{xe€lu,v]:x<f(x)}, x =inf{x € [u, v]:x > f(x)}.
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In case X = R”" this result is exactly [2, Theorem 2].
Proof. Foreach x € X, i € I define
gr(t) = filx + (t—x;)e') forte[u;, v].

From (2) and (3) we get min{D_g;(¢), D, g (t)} > —oo for ¢ € [u;, v;] and
u; < gx(wi), vi > g¥(vi).

Hence by [2, Corollary 1] the function gF(¢) has a greatest fixed point M;x
and a smallest fixed point m;x and

5) Mix = sup{t € [u;, vi] : t < g7 (1)},
mix = inf{t € [u;, v;]: t > g¥(1)}.

Since, by (1), g*(¢) < g/ () for each pair x,y € [u, v] with x <y, we con-
clude that M;x < My, m;x < m;y for x,y € [u, v] with x <y . Therefore
Mx = (M;x);c; defines an increasing map M: [u, v] — [u, v].

Let X = sup{x € [u,v] : x < Mx} be the greatest fixed point of M.
Combining the equations X; = M;X and g?(M,-f) , we get X; = g?(f,-) = fi(X)
for each i € I. Therefore X is also a fixed point of f. Since x < f(x) implies
x < MXx by (5), we claim x <X and hence X = sup{x € [u, v]:x < f(x)}.

In a similar way we can prove that the smallest fixed point x of the increasing
map m: [u, v] — [u, v] is the smallest fixed point of f and that the second
equation in (4) is fulfilled.

Corollary. Let u,ve X, u<v, and f = (f)icr: [u,v] = X be a function
with the following properties:

filx)> fily) forx,yeu,vliwithx<yandx;=y;, i€l,
max{D~ fi(x), DT fi(x)} < oo forx€u,v], i€l,
u; > filx + (ui—x)e'), v < filx+ vi—x)e') forxelu,v], iel.
Then f has a greatest fixed point X and a smallest fixed point x and
X =sup{x € [u, v]: x> f(x)}, x=inf{x € [u, v]: x < f(x)}.

Remarks. (1) In infinite-dimensional Banach spaces X a function f: X — X
is quasimonotone increasing if x,y € X, x <y, ¢ € K*, ¢(x) = o)
implies ¢(f(x)) < ¢(f(y)), where K* = {¢p € X* : p(x) > 0 for all x € K}
(see Volkmann [3]). For X = R", ¢g, or /7, 1 < p < oo, condition (1) is
the same as quasimonotonicity. In case X = /[ condition (1), even together
with (2), is weaker than quasimonotonicity. Choose ¢ € K* with ¢(x) = 0
for x € ¢y and ¢(e) = 1 for e = (ey)nen With e, = 1 for all n € N. For
X = (Xp)nen € [, define

1 for x, <0,
filx)={ 1—nx, for0<x, <1,
0 for x, < i,

Then f = (fu)nen: {®° — [°° satisfies (1) and (3), but is not quasimonotone
increasing,.

(2) In X = [*~, methods analogous to these used in this paper also lead
to existence theorems for ordinary differential equations with quasimonotone
right-hand side (see [1]).
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