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WITH INTEGRABLE COEFFICIENTS
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Abstract. Consider the second order nonlinear differential equation y" +

a{t)f(y) = 0 where a(t) e C[0,oo), f(y) <e C'(-oo,oo), f'(y) > 0,
and yf(y) > 0 for v ^ 0. Furthermore, f(y) also satisfies either a super-

linear or a sublinear condition, which covers the prototype nonlinear function

f(y) = \y\y sgn v with y > 1 and 0 < y < 1 respectively. The coefficient a(t)

is allowed to be negative for arbitrarily large values of t and is integrable in

the sense that the improper interval ft°° a(s)ds = A(t) exists for each t > 0 .

Oscillation criteria involving integrals of A(t) due to Coles and Butler for the

superlinear and sublinear cases are shown to remain valid without the additional

hypothesis that A(t) > 0 .

We consider the second order nonlinear differential equation

(1) y" + ¿z(í)/(y) = 0,        re[0,oo),

where ¿z(r) g C[0, oo) and f{y) G C'(-oo, oo), and fíy) > 0 for all y and

satisfies y fíy) > 0 if y ^ 0. The prototype of equation (1) is the so-called

Emden-Fowler equation

(2) y" + ¿z(/)|yKsgny = 0,        y>0.

Here we are interested in the oscillation of solutions of (1) when /(y) also

satisfies the following superlinear condition:

»        •</■&.    I dy
< oo,      for all e > 0,

m
which corresponds to the special case fíy) = ly^sgn y when y > 1, and the
following sublinear condition:

(4) 0< T, /   -^-<oo,      foralle>0,
Jo        J-eJiy)

which corresponds to the special case fíy) = \y\y sgn y when 0 < y < 1. These
assumptions were first introduced systematically in [17]. The coefficient ait)
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is allowed to be negative for arbitrarily large values of t, and in addition, we

assume that its integral over the nonnegative reals is finite. In other words,

the improper integral Ait) = Jf° ¿2(5) ds exists and is finite for each / > 0.

Under these circumstances, in general not every solution to the second order

nonlinear differential equation ( 1 ) is continuable throughout the entire half real

axis. For this reason, we confine ourselves with those solutions of ( 1 ) that exist

and can be continued on some interval of the form [fo, 00) where to > 0 may

depend on the particular solution. Such a solution is said to be oscillatory if it

has arbitrarily large zeros. Equation ( 1 ) is called oscillatory if all continuable

solutions are oscillatory.

In the superlinear case, the first oscillation theorem for equation (2) is that

of Atkinson [1] who proved if a(i) > 0 then

(5) lim   /   tait) dt = 00

is sufficient for oscillation of (2) when y > 1. This result was improved by

Kiguradze [10] by removing the requirement that ait) > 0. On the other hand,

Coles [7] showed that if Ait) > 0 then (5) can be further relaxed to

(6) lim   /   Ait) dt = 00.
T^°°Jo

In the sublinear case, the first oscillation result for equation (2) is due to

Belohorec [2] who proved that if a(i) > 0 then

(7) lim   /   fait) dt = 00
T^°° Jo

is sufficient for oscillation of (2) when 0 < y < 1. In a subsequent paper,

Belohorec [3] showed that the condition ¿z(z') > 0 was superfluous, thus provid-

ing the analogue to Kiguradze's result in the superlinear case. When Ait) > 0

Butler [5] proved the analogue of Coles's result; namely, the condition that

(8) lim   /   f-1 Ait) dt = 00
7"—00 Jo

is sufficient for oscillation of (2) when 0 < y < 1. If Ait) > 0 then (7) implies

(8); so Butler's result extends the original theorem of Belohorec. When A(t)

exists for each t > 0, equation ( 1 ) is often referred to as having integrable

coefficients. There is extensive literature on oscillation of (1) in this special

situation. In the linear case, i.e., /(y) = y, we refer to [16] and in the nonlinear

case, that of Butler [4].
In this paper, we consider the natural question: can the conditions Ait) > 0

in the oscillation theorems of Coles [7] and Butler [5] be removed? In a recent

article [19], we improved Coles's result by showing that Ait) > 0 is indeed

superfluous. Here we will prove that the same is true for Butler's theorem. It

will be shown that our arguments are in fact sufficient to obtain extensions of

Coles's and Butler's results to the more general equation (1). More specifically,

we prove the following superlinear extension.

Theorem 1. Let fíy) satisfy the superlinearity condition (3). Also let Ait) exist

for each t > 0 and satisfy condition (6). Then equation (1) is oscillatory.
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The sublinear case is more difficult and will require additional assumptions

of the nonlinear function in the following condition:

(9) /W(v)>±     for ally,

where c > 0 and Fíy) = Jq dv/fiv). In the special case /(y) = ly^sgn y,
c = (1 - y)/y . Condition (9) has been found useful in other oscillation theorems

( see Philos [15] and also [ 18, 20] ). This assumption was first introduced by Coles

[8] in the following form:

^S^S-1    '»rail,.
F'2iy) c

Subsequent applications indicated that (9) is in fact more convenient to use

than its equivalent form above. Thus, we shall prove

Theorem 2. Let /(y) satisfy the sublinearity condition (4) ¿zzz¿i also (9). Suppose

Ait) exists for each t>0 and satisfies

lim  /
P^oo,/0

(10) lim   /    tÁ-1Aít)dt = oo,
T->oo Jo

where X = l/ic + 1) < 1. Then equation (1) is oscillatory.

Crucial to the proofs of the above two theorems is the following result due

to Kwong and Wong [11]:

Proposition 1. Let Ait) exist for each t > 0. Suppose y(?) ¿s a nonoscillatory

solution of il) on [to, oo). Then the integral equation

(id        A=Q+,w+riAà
fiy(t)) Jt       Piyis))

is satisfied for t > to, where a is a nonnegative constant. Moreover, if the

condition

(12) lim /(y) = ±oo
y—>±oc

¿s satisfied then a = 0.

Proof of Theorem 1. Since fíy) satisfies (3), it clearly satisfies (12); hence the

integral equation (11) is satisfied with a = 0. Let y(i) be a nonoscillatory

solution of equation (1), and it satisfies the integral equation (11) with a = 0.

Dropping the last term in (11), we have the inequality

v'it)
(13) 75^",•

Integrating (13) from i0 to / and denoting (7(y) = JJ° dv/fiv), we find

/"'   v'(s) iy^  dv

> Í'a{s
Jto

as t —y oo . This is the desired contradiction, so equation ( 1 ) is oscillatory.

hence

Giyih)) - Giyit))
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Proof of Theorem 2. We begin by noting that if fíy) satisfies (9) then (12) is

also satisfied. In fact, from (9) and the definition of Fíy), we find F'{y) =

l/fiy) and
f'iy) > 1 F'iy)
fiy)  - c Fíy) •

Integrating above from y0 to y , one obtains

log£4>ilog.™-
■fiy0)-c   6F(y0)'

hence

//WV, Fjy)
\f(yo)J   -Fiyo)-

Applying (9) again to the inequality in the above line, we note

cf'íy)ífíy)Y > J-rtlW > JF(y)wv."  - Fiyo) '

Integrating once more from yo to y yields

(çft)(r>r-/W«)i^-lif,
which shows that fiy) —> +00 asy—►oo. A similar argument applies for

y <y0 and results in /(y) -» -oo as y -* -oo, proving (12). So if y(i) is any

nonoscillatory solution of (1), then it satisfies the integral equation (11) with
a = 0. In particular, we have

<i4)       c^m?*^-
from which we shall show that yit) has the following asymptotic behavior:

(15) limffii»=0.
t—>oo t

To prove (15), we apply the Schwarz Inequality and estimate F(y(i)) as

follows:

Fíyít))-Fíyítx))= \f-^Lds
[Jtt

'/2   /   ,/       i \ !/2

fiy(s))

where tx > to- In view of (14), we choose tx sufficiently large so that for any

e>0,

(n) rf,{y)y'2 ds <e-
( n Jtl    fiy)2        4-

Using (17) and condition (9) in (16), one obtains

(18) Fiyit)) < Fiyitx)) + ^ (J'Fiyis))ds
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Suppose F(y(i)) G L\tx, oo).  Then Fiyit)) is bounded by (18) so (15) is
satisfied. Otherwise, we can choose t2>tx so that

Fiyitx))<^^Fiy)ds^j for t > t2

which together with (18), yields

/ z" \ 1/2
(19) Fiyit)) <^[Jt F(y(s))ds)      .

Upon integrating (19), we have for t > t2,

(20) (JtlFiy)ds)^    -<Kj^Fiy)d^      <^{t-12) <^-t.

Once again we can choose ¿"3 so that J'2 Fiy) ds < cet2/4 for all t > i3. With

(19) and (20), this proves the desired assertion (15).

We define the function 0(r) = iA_IF(y(i)) and note by differentiation that

y'W _ ,i-/U'¿^_l¿i _ i\*-x.
fiyit))

which combines with condition (9) to give

t1-À<b'it) +il-X)rÁ<f>ít),

y'2        1'JW2-(21) fíy)-Z— > -ti-*?— + 2Xt-Á(p' + Xíl-X)rl-A(p

We further note that integrating the second term of the right-hand side of (21)

yields for T > t,

<22>      22/Vyw* = 2,{m_Äi)+^(&}.

On account of (15) and the fact that (pit) is nonnegative, the limits of the two

integrals in (22) both exist and could be infinity. Noting (14) and X < I, we can

integrate both sides of inequality (21) and deduce that the limit of the integral

on the left-hand side of (22) must be finite. Hence the integral on the right-hand

side of (22) is likewise finite, and therefore, we can define an energy function

(23) lit) = (bit) - il + X)tx r^ds.
Jt     »

We note that y(f) is a solution of equation (1) and also satisfies the integral

equation (11) with o: = 0. Computing X'(i), we find

ï'C) = ''~'j^yi + (-1 - i)<'"2f«0)

Combining the second and last terms in the above and using (11), one obtains

(24)        m=^^f^*)+um
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where X= 1/(1 + c) < 1, c = (1 -X)/X > 0. Furthermore, we apply (15) and
combine (21) and (22) in (24) to obtain

(25) X'(f) > t*-lAit) + -tx~x H sx~x^4 ds.
c       Jt (pis)

Since the integral term above is nonnegative, we have £'(?) > tx~lAit), which

implies that Z(Z) —> oo as / —> oo in view of (8). From the definition of E(r) in

(23), we also deduce that (pit) —> oo as t —> oo . Define t„ = sup{/: (pit) < n} ,

which satisfies t„ —* oo as n —> oo, and also t > tn implies (pit) > n = <pitn) ■

Substituting t in (23) by t„ and using its definition, we obtain

^ítn) = <pítn)-íl+X)tknr^ds
Jin       S

ds
>(pítn)-íl + X)tn(pit„) / x+i

= <PÍtn){l-íl+X)\} = -\<pítn)<0,

which contradicts the fact that X(i„) -» oo as zz —> oo. The proof is now

complete.

Remark 1. When /(y) = ly^sgny, c = (1 - y)/y and X = y, so condition

(10) becomes (8).

Remark 2. We note that the theorem of Kwong and Wong [11] has been used

by others, notably by Naito [14] in proving results on asymptotic behavior of

nonoscillatory solutions of equation (1) (see also [13]).

Remark 3. In Coffman and Wong [6], we advocated the theory of "duality

principle" for superlinear and sublinear equations in that every oscillation and

nonoscillation theorem for the superlinear equation has its natural analogue for

the sublinear equation and vice versa. In most cases known to us, by setting

y = 1 in an oscillation criterion, one often obtains a new oscillation result.

Here we may refer to conditions (5) and (7) and also their extensions (6) and

(8). See also Kwong and Wong [12, 13], and Erbe [9].

Remark 4. It is easy to give examples of ¿z(i) such that (6) is satisfied by not

(5). Consider
.,■■.      1      2 sin/

A{t) = i + ̂ r
l        v t

and so
. .      1      sin/     2cosí

a{t) = T2 + ¥ñ-^F-

Here Ait) is not nonnegative and the improper integral J°°sais)ds does not

exist. Hence, neither Coles's [7] nor Kiguradze's [10] theorem would apply.

Similarly, for the sublinear equation (2), 0 < y < 1, we can also take

,. ,      1      ^/tsint
Ait) = - +

Here

ty       f>

,t,        Y    ,  Y Visait     vTcosí
û(0 = JÏ+1 + —¡yTl— + —¡y—
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fails to satisfy Belohorec's condition (7), but Ait) assumes negative values for

large values of / and satisfies (8); so by Theorem 2 we have oscillation of

equation (2).

Remark 5. Finally, we give nontrivial examples of nonlinear functions satisfying

conditions (3), (4), and (9). In the superlinear case, the example /(y) = ey -

1 clearly satisfies (3). The function fiy) = y(|y|_1/2 + |y|l/2) satisfies both

conditions (3) and (4). Moreover, it satisfies condition (9), since in this instance,

Fiy) = 2 tan~l yfy and condition (9) is satisfied with c = 1.
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