AN INVARIANT ON 3-DIMENSIONAL LIE ALGEBRAS

HIROYUKI TASAKI AND MASAAKI UMEHARA

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. We construct an extra symmetric bilinear form on a 3-dimensional Lie algebra $\mathfrak g$ which induces an invariant $\chi(\mathfrak g)$ on $\mathfrak g$. Moreover it provides a new viewpoint for the classical classification of 3-dimensional Lie algebras

In this note, we shall construct an extra symmetric bilinear form S on a 3-dimensional Lie algebra, which provides new viewpoints for the classical classification of 3-dimensional Lie algebras.

Let g be a 3-dimensional Lie algebra with the Lie bracket [,] over a field k of characteristic $\neq 2$. Let $\{e_1, e_2, e_3\}$ be a fixed basis. There is a canonical identification $\bigwedge^2 \mathfrak{g}^* \cong \mathfrak{g}$ by $e_1 = e_2^* \wedge e_3^*$, $e_2 = e_3^* \wedge e_1^*$, and $e_3 = e_1^* \wedge e_2^*$, where $\{e_1^*, e_2^*, e_3^*\}$ is the dual basis of \mathfrak{g}^* with respect to $\{e_1, e_2, e_3\}$. Then the bracket $[,] \in (\bigwedge^2 \mathfrak{g}^*) \otimes \mathfrak{g}$ is considered as an element of $\mathfrak{g} \otimes \mathfrak{g}$ by the identification and induces a bilinear form $L \colon \mathfrak{g}^* \times \mathfrak{g}^* \to k$, which is invariant under the change of a basis up to scalar multiplications in k. If we set the structure constants of the bracket [,] by

$$[e_{2}, e_{3}] = a_{11}e_{1} + a_{12}e_{2} + a_{13}e_{3},$$

$$[e_{3}, e_{1}] = a_{21}e_{1} + a_{22}e_{2} + a_{23}e_{3},$$

$$[e_{1}, e_{2}] = a_{31}e_{1} + a_{32}e_{2} + a_{33}e_{3},$$

then the representation matrix of L with respect to the basis $\{e_1^*, e_2^*, e_3^*\}$ is written by $A=(a_{ij})_{i,j=1,2,3}$. If we change the basis on $\mathfrak g$ by a matrix $P=(p_{ij})_{i,j=1,2,3}\in \mathrm{GL}(3,k)$ such that $e_j'=\sum_{i=1}^3 p_{ij}e_i$, then new structure constants A' are given by $A'=(\det P)P^{-1}A^{\mathrm{t}}P^{-1}$.

Now, we define another bilinear form $S: \mathfrak{g} \times \mathfrak{g} \to k$ by

(2)
$$S(u, v) = L(u_1^*, v_1^*)L(u_2^*, v_2^*) - L(u_1^*, v_2^*)L(u_2^*, v_1^*)$$
 for $u, v \in \mathfrak{g}$,

where $u=u_1^*\wedge u_2^*$ and $v=v_1^*\wedge v_2^*$ with respect to the identification $\bigwedge^2\mathfrak{g}^*\cong\mathfrak{g}$. Then it can be easily checked that the representation matrix of S coincides with the cofactor matrix A^* of A. Since $A'^*={}^{\mathrm{t}}PA^*P$, the bilinear form S is determined independently of the choice of a basis. The following lemma is immediately obtained from the Jacobi identity.

Received by the editors October 3, 1990.

1991 Mathematics Subject Classification. Primary 17B05; Secondary 17B30.

Key words and phrases. 3-dimensional Lie algebra.

Lemma. The bilinear form S is symmetric, namely, ${}^{t}A^{*} = A^{*}$.

It should be remarked that $\mathfrak g$ is unimodular if and only if the matrix A is symmetric. When k is algebraically closed, the isomorphism classes of 3-dimensional unimodular Lie algebras are classified by the rank of the matrix A.

Theorem 1. Let \mathfrak{g} be a 3-dimensional Lie algebra. Then the bilinear form S defined by (2) is proportional to the Killing form F of \mathfrak{g} .

Proof. Let B be a representation matrix of the Killing form F. By a straightforward calculation, one can obtain the identity $B = \hat{A}^* - 2A^*$, where \hat{A}^* is the cofactor matrix of $\hat{A} = A^{-1}A$. If \mathfrak{g} is unimodular, then $\hat{A}^* = 0$ and F = -2S holds. So we may assume that \mathfrak{g} is not unimodular. Then \mathfrak{g} is solvable and the basis $\{e_1, e_2, e_3\}$ can be chosen such that $a_{3i} = a_{i3} = 0$ (i = 1, 2, 3) (see [1, p. 12]). Then one can easily verify that $\hat{A}^* - 2A^*$ is proportional to A^* . This proves the theorem.

By the theorem, we can define an invariant $\chi(\mathfrak{g}) \in \mathbb{P} = k \cup (\infty)$ by $F = (\chi(\mathfrak{g}) - 2)S$, unless F = S = 0; namely, \mathfrak{g} is neither Heisenberg nor abdelian. There is another exceptional Lie algebra denoted by \mathfrak{k} , which is characterized by the property that the matrix A is skew symmetric. One can easily verify that the well-known classification theorem (e.g., [1, p. 13; 2, Lemma 4.10]) of 3-dimensional Lie algebras is rewritten in the following

Theorem 2. Let \mathfrak{g} be a 3-dimensional Lie algebra that is neither unimodular nor isomorphic to \mathfrak{k} . Then there exists a basis $\{e_1, e_2, e_3\}$ of \mathfrak{g} such that

(3)
$$[e_3, e_2] = e_1, [e_3, e_1] = -e_1 + \frac{1}{\chi(\mathfrak{g})} e_2 and [e_1, e_2] = 0.$$

REFERENCES

- 1. N. Jacobson, *Lie algebras*, Intersci. Tracts in Pure Appl. Math., vol. 10, John Wiley-Sons, New York, 1962.
- J. Milnor, Curvature of left invariant metrics on Lie groups, Adv. in Math. 21 (1976), 293-329

Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

Department of Mathematics, College of General Education, Osaka University, Toyonaka, Osaka, 560, Japan

Current address: Masaaki Umehara: Department of Mathematics, College of General Education, Osaka University, Toyonaka, Osaka, 560 Japan

E-mail address: Hiroyuki Tasaki: a906023@sakura.cc.tsukuba.ac.jp