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STABLE MEASURE OF A SMALL BALL

M. LEWANDOWSKI, M. RYZNAR, AND T. 2AK

(Communicated by Lawrence F. Gray)

Abstract. Let p. be a symmetric p-stable measure on a Banach space (E,

|| • ||) . We prove that /¿{||x|| < t) < Kt, where the constant K is independent

of all properties of p except for the measure of the unit ball /¿{||x|| < 1} .

1. Introduction and preliminary facts

Let p be a symmetric Gaussian measure on a separable Banach space (F,

|| • ||). In the paper of Szarek [7] there is the following bound for the distribution

function of the norm

(1) p(B,)<Kt,        t>0,

where B, is the ball with radius t and F is a constant depending only on

PÍB\). This inequality was used to obtain some results in the theory of com-

putational complexity [7].

A similar result in the Hubert space case was proved by Sawa [6]

/z(F,) < <I>(0,        0<?<0,2

provided / ||x||2¿i/z(x) = 1 and 0(0 = J\ /0'exp(-x2/2)¿/x .

The purpose of this note is both to extend ( 1 ) to the case of symmetric Te-

stable measures, 0 < p < 2, and to give another proof for (1). Our method

consists in using a series representation of stable random vectors obtained in

[4].
Let us recall that a symmetric measure p is called ^-stable, 0 < p < 2, iff

for every t, s > 0 we have

(2) tX + sY = isp + tp)x/pX,

where X, Y are i.i.d. random vectors with the distribution p. It is well known

(see, e.g., [5]) that there exists a finite measure cr on 5j = {x : ||x|| = 1} such

that the characteristic functional of p has the form

pix*) = exp(- f \x*ix)\po idx)), x* eF.

Received by the editors November 26, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 60B11, 60E07.
Key words and phrases. Stable measure, Gaussian measure, distribution of the norm.

This paper was presented by the second author on June 1, 1990 during Banach Center Probability

Workshop in Warsaw, Poland.

©1992 American Mathematical Society
0002-9939/92 $1.00+ $.25  per page

489



490 M. LEWANDOWSKI, M. RYZNAR, AND T. ZAK

The measure a is called the spectral measure of p .
In the following lemmas we recall a series representation of p-stable random

vectors in F. Let (a,-)~, and (z,)~, be two sequences of i.i.d. random vari-

ables such that P(ai > 0 = e~' > E\zi\p — 1 > and zi is symmetric. We assume

that (a,) and (z,) are independent. Next, we denote Yn= ax + a2 + ■• • + an

and
>/>      /        i _ p        \x/p

(       v psint; dv
T(2 -p)C0S7T^

i/p.Lemma 1 [4]. (a) For 0 < p < 2 the series cp J2°lx T( /pz, is convergent a.s.

and the characteristic function of the limit is exp(—|r|p).

(b) For 0 < p < 1 the series ^°f, iy   . is convergent a.s. and has p-stable

distribution with the characteristic function

exp(-t>|i|p(l -z(sgnOtgzrf)).

Lemma 2 [4]. Let p be a symmetric p-stable measure, 0 < p < 2, with the

spectral measure a. Let iVj)^ be a sequence of i.i.d. random vectors with the

distribution a/aiSx), independent of (a,) and (z;). Then the series

(3) cp[aiSx)]xfpY/rjl,PVizi
i=i

is convergent a.s. and has the distribution p.

2. The main result

Theorem. Suppose that p is a symmetric p-stable measure, 0 < p < 2, such

that J \\x\\rpidp) = 1 for some r € (0,p). There exists a constant Kip, r)

depending only on p and r so that

PÍB,) < Kip, r)t,        t>0.

The proof consists of two steps.   In the first one we find the appropriate

estimate for piBt) provided ff(5i) = 1.

Step 1. We use Lemma 2 assuming that (z,)g, is a Gaussian sequence and

ff(5i) = 1. Suppose that (z() is defined on a probability space (Qi, Px) and

(a,-), iVi) are defined on iÇl2,P2). When we fix (a,) and (1^) then the

random vector cp 5Z~, Tj"l'pVjZiicox) is Gaussian. By Anderson's inequality

[1] we have:

i=i

< tCp^r-Vo^Ziico,)

CpY-"pVxzxiœx) + YJCPT~XlPViziicox\

i=i

< t

since || Fi |

(4)

<Pxi\\CpT-xlPVxzxicox)\\<t)

= p1(|z1|<c;1r;/po      />2-a.s.

1   /Va.s. Therefore, by Fubini theorem

p(Bt) < Px x P2i\zxicox)\ <r\,Pico2)CpXt) = Vpit),
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where *¥p is the distribution function of \zx\Tl l'pcp .

Step 2. In this step we prove the theorem for p-stable measure p, 0 < p < 2,

provided / ||x||r dpix) = 1, r < p. Let iXj)^ be a sequence of i.i.d. random

vectors independent of (a,) and with the distribution of Xx equal to p . Put

Y = crJ2r;1,rXi-
i'=l

By Lemma 1 the characteristic functional of Y is equal to

\\x\\rpidxexp- / \x*ix)\rpidx) = exp- I \x* (¿ñ)

= exp- / |x*(x)|rffy(¿ix),
J

where ffy(5i) = / Hxl^/z^x) = 1.

Hence Y is an r-stable symmetric random vector with the spectral measure

ffy so that by Step 1, Pi\\Y\\ <t)< ¥r(0 . On the other hand by the property
(2) and the independence of (T,) and ÍX¡) we obtain

oo \  XIP

-Pi' \     xEr
\i=l

The series X^i T,      = z/(^) is convergent a.s. by Lemma 1 and zy(£) is

independent of Xx . Therefore, for every ¿2 > 0 :

Vriat)>Pi\\Y\\<at) = Picr G)
i//'

\\Xi\\<at)

>Picrr¡x'p<a,  \\XX\\ <t) = P(n< Pi\\Xx\\<t).

Hence

(5) PiBt) <
Vriat)

P{n<ifr)pY

Simple calculations give sup^o^O = C < oo . Putting

-(-(f))Kip, r) = supvI/;(0-infa
(>0 a>0

we get the desired conclusion.

For arbitrary values of / \\x\\rp (¿/x) we obtain, by the Cebyshev inequality,

piBt)<Kip,r) j\\x\\rPÍdx)
-l/r

<Kip,r)[l-piBx)]-xlr-t.

This inequality is a version of (1) for stable case p < 2 and for p = 2 it is

precisely (1).

3. Estimation of constants F(p, r)

_     1 I y

First we estimate the value of sup^l^O • Recall ¥r(0 = Pi\zx |Tj ' cr < t),

zx   has the distribution  A(0,crr), where  ar = nxl2riy/2TxIrir-^-))~x ,   cr =
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((l-r)/r(2-r)coszrf)1/r,and cx

Now

/°°   V2 (   x2lrt2\ xx'r
=  /    ^^exp [-^-f-y]-e xdx

7o    y/nar       \   2cja2 )   cr

< Ki-
ll

s[nar

2"r(l + 1/r)

CrOr
= Ar.

We will also need an evaluation of the distribution function of r¡í\) =

Y^LX r~2 which, by Lemma 1(b), has ^-stable distribution on R+ with the

density fix) = l/(2x3/2)exp(-7r/(4x)) for x > 0. It is easy to notice that

/J(z/(i)<0 = l-O(v^).
(a) p = 2, r = 1. This is the Gaussian case. Assume that / \\x\\p (¿/x) = 1 .

By (5),

PÍBt) < Ax • infa
a>0

C\

1-1

sup r( 1
r>0

<D(r)) t < 2,35t,

because Ax = I, cx
of r = 0,75.

(b) For arbitrary p £ (0, 2) we take r

the density of zy(^)). In this case

, and the above supremum is attained in a neighborhood

f (because in this case we know

(6)    F(p,|)=^/2inf¿z

1

ï)sfer
• ïï77^r2'»(p/4+ 1/2)T(1 +2/p)¡nf(r2"'(l -«(r)))-1.

¿llpy/7l r>0

Observe F(/z, ^) tends to infinity very rapidly as p —» 0. But, when p >

e > 0 we can find some upper bound for it. For example, if 1 < p < 2 then the

properties of the function T(x) give the estimate piBt) < 2\/2lr/(l -<t>(l))-r <

15, St, when we take r = 1 in (6) for simplicity.
(c) If 0 < p < 1 we can give an estimate better than (6).

It is well known that in Banach spaces of stable type p there holds an in-

equality between the r th moment of a p-stable measure and the total mass of

its spectral measure, and every Banach space is of stable type p , p < 1 (see,

e.g., [5]). Namely, as it was shown by Pisier [2, Lemma 5.4]: if X is a p-stable

random vector, 0 < p < 1, 0<r<p, and a is its spectral measure then

(7) [E\\X\\<]X>< <Cp^\oiSx)]x>p,

2r_1r(l - r/p)ir /0°° zz-''-1 sin2 udu)~x denotes the rth moment

of the standard symmetric p-stable random variable on R (for the value of

where crpir)
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Cpir) compare [3]). But

/•OO

• /    zz—1
Jo

/■oo

sin2 u du = 2r~x I    u
Jo

sinudu = 2r xc

nr
= 2r-T(2-r)cosy.[(l-r)]-1

Finally

Cpir)
r(l-r/p)(l-r)

T(2 - r) cos f

l/r

and, by (7),

(Fimn1/r < m-r/p) IJr

T(l-r)

BPir)[oiSx)]xlp.

m-p)ji-p)
T(2 - p) cos f .

1/i

MSi)]1"

We use only Step 1. If p îs symmetric p-stable with the spectral measure a
then by (4) and (7) and the definitions of Ap and BPir) :

PÍB,) <

<

%(0
[ff (5, )]'//-

yp(Q^(r)

[/Hxll^ííix)]1/^   [/||x|Kzi(¿ix)]
<

ApBpjr)
l/r

Remarks. ( 1 ) If p is a concrete given number we can estimate more carefully

in (6) and get better constant.

(2) For symmetric p-stable random variable on R with characteristic func-

tion exp(-|i*|p) we have Pi\X\ < t) < ^_1T(1 + 1/p)/ because T(l + l/p)/7r
is precisely the value of the density at zero, hence the constant ApBPir) must

tend to infinity at least like T(l + 1/p) when p -» 0.
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Added in proof. When the first draft of this paper was circulating, the second
author had a talk on this subject during the Banach Center Probability Workshop

(June 1990). After his talk Professor X. Fernique kindly informed us that for the

Gaussian case (p = 2) he knew another two proofs. One is explicitly contained

in his paper Les vecteurs aléatoires gaussiens et leurs espaces autoreproduisants,

Technical Report 34, Ser. Lab. Res. Statist, and Probab., University of Ottawa,

1985.
For the second, one can use an inequality of Kanter ÍProbability inequalities

for convex sets and multidimensional concentration functions, J. Multivariate

Anal. 6 (1976), 222-236, inequality 4.1): for ÍX¡)n=l independent and sym-
metric

2> < t ^(l) M+ ¿^(11^11 >o
■1/2
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Taking Xx = X2 = • ■ • = X/^/ñ and n = [^] we get the desired conclusion.

Fernique's proof is based on the rotational invariance of the product of Gaus-
sian measures; hence it does not immediately apply for p < 2. The second

method gives the estimate of order tpl2, which is worse than t for t —> 0, if

p <2.
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