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Abstract. We prove that the generator of a Co-semigroup on Ca(R") is a

bounded operator. Nevertheless, certain elliptic differential operators generate

/?-times integrated semigroups on Ca(M") whenever ß > n/2 + 1 .

1. Introduction

In 1985 it was proved by Lotz that the generator of a strongly continuous

semigroup on a space of type L°°ip) is a bounded operator (see [Na]). This

means in particular that a given differential operator on L°°(/z) does not gen-

erate a strongly continuous semigroup on L°°(/z). Nevertheless, it was shown

by Hieber [Hi2] that every elliptic differential operator A with constant coeffi-

cients satisfying Rep < C (/? denotes the symbol of A) generates a ß-times

integrated semigroup on L00(R") if ß > n/2.

In this note we prove similar results for the space C"(R"), the space of all

Holder continuous functions on R" . In fact, the generator of a strongly contin-

uous semigroup on Ca(R") is a bounded operator and a differential operator of

the above described kind generates a ß-times integrated semigroup on Ca(R")

whenever ß > n/2 + 1.

2. Integrated semigroups on Ca(R")

Let 0 < a < 1 . We denote by CQ(R'!) the space of all functions / c C(R")

such that

Ca(R") equipped with the norm \\f\\c° = sup|/| + ||/||a(> then becomes a

Banach space. Peetre [P] considered the space Ca(R") from the point of view

of topological vector spaces and proved that CQ(R")s/°° (see[P, p. 187]). This

result has an important consequence in the theory of Co-semigroups. Indeed,

combining this result with the above-mentioned theorem due to Lotz we obtain

the following.
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Theorem 2.1. Let (T(0)¿>o be a Co-semigroup on Ca(R") with generator A.

Then A is a bounded operator.

Remark. The result remains true if R" is replaced by the «-dimensional torus

T" or by a bounded region Q satisfying Peetre's condition (see [P, p. 188]).

Nevertheless, the theory of integrated semigroups enables us now to treat

the Cauchy problem for certain differential operators on Ca(R") in an elegant

way. More precisely, let A be a linear operator on a Banach space E and let

ß > 0. We call the operator A the generator of a ß-times integrated semigroup

(5'(í))¿>o on E if ico, oo) c p{A) (the resolvent set of A) for some wel

and there exists a strongly continuous mapping S: [0, oo) —► LÍE) satisfying

115(011 < Me0"   it > 0) for some M > 0 such that

fOO

RiX,A)=Xß       e~ktSit)dt       (A > max{co, 0}).
Jo

In this case (5(0)¿>o is called the yS-times integrated semigroup generated by

A. In particular, a 0-times integrated semigroup is a Co-semigroup. The above

integral is of course understood strongly in the sense of Bochner. For more

information about integrated semigroups we refer to [A, AK, Hi 1, KH, Ne] and

the references therein.

The following lemma is a straightforward modification of a theorem due to

Arendt and Kellermann (see [AK, Proposition 3.1]). The proof is therefore
omitted.

Lemma 2.2. Let E be a Banach space and A be a linear operator on E. Assume

that there are constants co>0, M > 0, and y > -I such that X c piA) for all
XeC with Re X > co and

\\RÍX,A)\\ <M\X\y       ÍReX>co).

Then the operator A generates a ß-times integrated semigroup on E for all

ß>y+l.

In order to prove that an elliptic differential operator A with constant coef-

ficients where the symbol p of A takes its values in a left-half plane generates

an integrated semigroup on Ca(R") we use a classical multiplier theorem for

Ca-spaces (see e.g., [T, p. 30, 93] or [M, Theorem' I, p. 282]).

Lemma 2.3. Let n e N, j — [n/2] + 1, M > I, and m be a function of class

0 on R" . //

GDHs(ï^r w<-ih
then there exists a constant C such that for all fc CQ(R"), \[9r-xim3r f)\c(w)

<CM"/2||/||c„(Rn).

Here & denotes the Fourier transform in the sense of tempered distributions

and k a multiindex.
We now consider in detail elliptic differential operators with constant coeffi-

cients. If p is the symbol of such an operator then p is an elliptic polynomial
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on R" . In the following we always assume Rep < C. We associate with p a

linear operator A on F := Ca(R") as follows. Set

DiA):={fcF; r'(#/)€F}

and define
Af:=3r-Xip3rf)   for all f e DÍA).

Then the following holds.

Theorem 2.4. Let p be an elliptic polynomial on R" satisfying Rep < C for

some constant C, and let A be the operator on CQ(R") defined as above. Then

A generates a ß-times integrated semigroup (5'(0)¿>o on Ca(R") whenever

ß>n/2+l.

Proof. We show that the resolvent RiX,A) of A satisfies an estimate

||i?(A, ^)||l(c°(r»)) < Mn\X\"l2 for all A in a right-half plane. Then Lemma
2.2 yields the assertion.

To this end note first that the symbol o of i?(A, A) is given by r¿íC) :=
ÍX -pí¿;))-x for all íeR" and all X c C satisfying Re A > C. Moreover,
we have it(A, A)f = 3r-xirx3rf) for all f c F and all X c C satisfying
Re X > C. Hence, by Lemma 2.2 it remains to show that for every n c N there

exists a constant Kn such that

(2.1) |D*rAtf)| < (^|ï) (1*1 < A ReA>C+l).

Let C > 0, ReX > C + 1, \C\ > 1, and m be the degree of p. Then one
can show by induction that for every multi-index k ^ 0 there exist constants

Cx, ... , C\k\ such that

¿22Ï |JJ*rffll<Clg|W"'*'   l  C^l2m-'"   i        ,   q^l1*""-'*1
1     j '      X[Ç)l - \X-PÍÍ)\2 + \X-piW +""+ |A-p({)|l*l+1

for all A e C with Re A > C + 1 and all £ with |£| > 1. Therefore we obtain

H> 14(01(1+ |€l)   ^2{\x^^2 + W^H^ + ---+\x-pi^+x)

for all ¿f satisfying \c¡\ > 1. Since p is elliptic there exist constants K, L such

that \pi£)-X\ > K\c¡\m for all «* 6 R" satisfying |{| > (lAI/L)1/"1 =: Lx . Hence
there is a constant C¿ such that

\D><rx(i)\(l + \Z\)W<C'k       (ReA>C+l)

for all £ with |£| > max{l, Lx} . On the other hand, if |£| < max{l, LÁ},
then it is clear that there is a constant C¿' such that

|D*a(ç)|(l + |ç|)l*l<CM 1*1

for all X c C with ReX > C + 1. Choosing now #„ := max{C¿ , C'¿} we see

that the estimate (2.1) is fullfiled for all £ with |£| > 1 . Obviously such an
estimate holds for all ¿¡ with |£| < 1. Thus Lemma 2.3 implies the existence

of a constant M„ such that

\\RiX,A)\\L(Cam)<Mn\X\nl2       (ReA>C+l).   D
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Remark. The order ß of integration in Theorem 2.4 can be improved con-

siderably for the Laplacian A on Ca(R"). In fact, it follows from (2.2) that

\\RiX, A)\\L(c-(isi")) < M„/\X\ for all A e C with Re A > 0. Therefore the Lapla-
cian A generates a ß-times integrated semigroup on Ca(R") for all ß > 0.
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