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Abstract. A summability method S is called an R-type summability method

if 5 is regular and xy is strongly 5-summable to 0 whenever x is strongly

5"-summable to 0 and y is a bounded sequence. Associated with each R-

type summability method 5 are the following two methods: convergence in

/¿-density and /¿-statistical convergence where fi is a measure generated by 5 .

In this note we extend the notion of statistically Cauchy to //-Cauchy and show

that a sequence is /¿-Cauchy if and only if it is /¿-statistically convergent. Let

W{A) = Aßtt n z?N\N for A C N and Jf = f){W(A): AÇN, Xa is strongly
5-summable to 1}. Then /¿-Cauchy is equivalent to convergence in /(-density

if and only if every Gg that contains 3Í in /?N\N is a neighborhood of 3?

in /?N\N. As an application, we show that the bounded strong summability

field of a nonnegative regular matrix admits a Cauchy criterion.

In this note we explore a variety of structures related to the bounded strong

summability field of an /î-type summability method. We also show, given an R-

type summability method 5, how to construct a measure p associated with S

and define /¿-statistical convergence and convergence in /z-density. These meth-

ods are, respectively, stronger and weaker than strong S-summability on the

bounded sequences. We then characterize the measures for which /¿-statistical

convergence and convergence in /¿-density are equivalent. This characteriza-

tion is given in the context of measures, ideals of bounded sequences, subsets

of /?N\N, and lattices of summability methods. We also establish a Cauchy

criterion for /¿-statistical convergence which, via the above characterization,
yields a Cauchy criterion for the strong summability of a bounded sequence

with respect to a nonnegative regular matrix summability method.

In the following, we let

co = the collection of all real valued sequences,

tp = {x € co: x is finitely nonzero},

Co = {x eco: lim.x = 0},

c = {x G to: hmx exists},

/oo = {x £ co: sup \x„\ < oo}.
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Let 11*11 = sup„ \x„\ whenever x e /^ and let lx have the metric topology

induced by || ||. If x € co and L is a scalar, we let x-L denote the sequence

ixk - L) and ¡x| denote the sequence (|xK|) .

Following Freedman and Sember [10], we define a summability method to

be a linear subspace c$ ç co and a linear functional S : Cs -* R. If S is a

summability method we say that a sequence is 5-summable to L if Six) = L

and we say that:

(1) S is regular if c ç es and Six) = limx for all x e c.

(2) A sequence x is strongly S-summable toLifS(|x-L|) = 0.

(3) S is an R-type summability method (or RSM) if 5 is regular and xy

is strongly S-summable to 0 whenever x is strongly S-summable to 0 and y

is a bounded sequence.

We also let

\c\s = {x e co: x is strongly S-summable},

\co\s — {x e co: x is strongly S-summable to 0}.

We call \c\s n /^ the bounded strong summability field of S.

Recall that if T = (í„tk) is an infinite array of scalars where k and zz range

over N and x, y e co, we say that Tx = y if 53*11 t„ kxk = yn for all neN

and call T a matrix summability method. The matrix T is called nonnegative

if t„k > 0 for all n, k e N. A matrix summability method is called regular

if Tx e c and lim Tx = lim x whenever x € c and a sequence is said to be

strongly T-summable to L if lim„ 2~Zfc=i {n,k\xk — L| = 0.
Given a nonnegative regular matrix T, there are a few ways of generating

an R-tyoe summability method. Set ct = {x € co: lim Tx exists} and define

t: Ct —► K by t(x) = lim Tx. It is straightforward to verify that x: cj —> R

is an R-type summability method. Observe that cy n loo , \c\t , and \c\t n loo

are subspaces of ¿rr and that the restriction of x to any of these subspaces is

also an jR-type summability method. Also observe that x restricted to \c\t is

strong r-summability.

A regular nonnegative matrix T can also be used to define "convergence

in T-density" and 'T-statistical convergence." Let A ç N and let OÍA) =

lim„ 2\ZT=i tn.kXAÍk) = 1 when it is defined. We say that a sequence is con-

vergent in T-density to L if there is a B ç N such that ¿5(5) = 1 and

(x - L)xb c Co and ¿H-statistically convergent to L if ¿5({zc: \xk - L\ < e}) = 1
for all e > 0 . Let DT be the collection of all sequences that are convergent in

/"-density and Sp be the collection all T-statistically convergent sequences. It

can be established that Dp ÍSt) together with the functional that assigns each

element of DT (SY) the value to which the sequence converges in T-density (to

which the sequence is ¿"-statistically convergent to) is an Ä-type summability

method.
The preceding R-tyne summability methods have occurred frequently in the

literature. If T is the Cesaro matrix, then x is convergent in arithmetic mean

when it is defined on ct and strong Cesaro summability when it is restricted to

\c\t ■ Strong Cesaro summability first made its appearance in the literature in

1913, when Hardy and Littlewood extended Fejer's result that a Fourier series

is convergent in arithmetic mean to the result that a Fourier series is strongly

Cesaro summable [11]. Strong Cesaro summability also appears as "weakly

mixing" in ergodic theory. Moreover, the density arising from the Cesaro matrix
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is called the "natural density" in number theory. The notion of /"-statistical

convergence generated by the Cesaro matrix, which is usually called statistical

convergence, was introduced in [8] and has recently been studied in [6, 9, 14,

15, 20].
R-type summability methods are not necessarily generated by matrix meth-

ods. Chun and Freedman have given examples of nonmatrix R-type summa-

bility methods in [4]. Also, Mazur has shown there is a continuous nonnegative

linear functional v: loo —> K that satisfies zv(x) = limx for all x e c and

z/(xy) = z>(x)z/(y) for all x, y e loo [16]. v is a nonmatrix R-type summa-

bility method.

1. Convergence in /¿-density and /¿-statistical convergence

The following definition describes two ways to generate an R-type summabil-

ity method given a finitely additive two-valued measure. As will be noted later,

this definition includes the usual definition of convergence as well as the usual

definitions of convergence in density and statistical convergence with respect to

a nonnegative regular matrix summability method.

Definition 1. Let p be a complete {0, 1}-valued finitely additive measure de-

fined on a field Y of subsets of N that contains all finite subsets of N and

suppose píA) = 0 if \A\ < oo. If x € co, we say that

(1) x   is  /¿-density convergent to  L  if there is an  A  e  Y  such that

(x - L)xa € co and píA) = 1.
(2) x is /¿-statistically convergent to L if /¿({/c: \xk - L\ > e}) = 0 for all

£ >0.

It is straightforward to verify that convergence in /¿-density and /¿-statistical
convergence are R-type summability methods. Also note that a sequence has a

subsequence convergent to L if it is either /¿-statistically convergent to L or

convergent in /¿-density to L .

Given an R-type summability method, there is a natural measure associated

with it. Let S be an R-type summability method, Y = {A ç N: Six a) = 0
or 1} and define p:Y —* {0, 1} by píA) = Síxa) ■ It can be shown that Y
and p fulfill the requirements of the preceding definition, that a sequence is

/¿-statistically convergent to L whenever it is strongly S-summable to L, and

that a bounded sequence is strongly S-summable to L if it is convergent in

/¿-density to L [7].
The following definition and proposition were motivated by [9], where it is

shown that a sequence is statistically Cauchy if and only if it is statistically

convergent. We also note that if p is the measure generated by the usual

definition of convergence, then the following definition is equivalent to the usual

definition of Cauchy.

Definition 2. Let x e co. Then x is /¿-Cauchy if for every e > 0 there is an

zz € N such that pi{k: \xk - xn\ < e}) = 1.

Proposition 3. Let x e co. Then x is p-statistically convergent if and only if x

is p-Cauchy.

Proof. First we establish that a /¿-statistically convergent sequence is /¿-Cauchy.

Let x € co, e > 0, and suppose x is /¿-statistically convergent to L. Since
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PÍ{k: \xk — L\ < e/2}) = 1, we can select an n(e) e N such that |x„(£) - L\ <

e/2. The triangle inequality now yields that pi{k: \xk -x„(£)| < e)} = 1. Since

e was arbitrary, x is /¿-Cauchy.

Now suppose that x is /¿-Cauchy. Select «(1) suchthat

PÍ{k: \xk-x„{X)\ < l}) = 1

and let Ax = {k: \xk — x„(1)| < 1} . Suppose that «(1) < zz(2) < • • • < «(/?) have

been selected in such a fashion that if 1 < r < s < p and As = {k: \xk -xnrS)\ <

l/2i_1}, then piAr) = 1 and nis) e Ar. Select N such that

/¿({/c:|xk-x„|<1/2'+1}) = 1.

Since /¿(flf Aj n {k: \xk - xN\ < 1/2P+1}) = 1, there exists an «(/? + 1) e

f)f Aj n {k: \xk - xN\ < l/2p+1} such that nip) < n(p + 1) and

Ap+x = {k:\xk-xn{p+X)\< l/2»}D{k:\xk-xN\< l/2"+1}.

Observe that piAp+x) = 1 and «(/? + I) e As for all s < p + I.
Note that since |x„(P) - x„(P+1)| < 2~" (x„(P)) is Cauchy, and hence there

exists an L such that limp xn(p) = L. We claim that x is /¿-statistically con-

vergent to L. Let e > 0 be given and select p e N such that \xn(P) — L\ < e/2

and e > 2~p . Note that if |xfc - L\ > e then |x„(p) - xk\ > e/2 > 2l~p, and
hence k is not an element of Ap . It follows that /¿({/c: \xk -L\ > e}) = 0 and

that x is /¿-statistically convergent to L.

2. The equivalence of /¿-statistical convergence
and convergence in /¿-density

It becomes natural to wonder when the definitions of convergence in p-

density and /¿-statistical convergence coincide. For instance, if an R-type

summability method generates a measure for which the two definitions are

equivalent then the last proposition yields a Cauchy criterion for its bounded

strong summability field.
We now introduce some of the structures we wish to explore. Let 5 be a

R-type summability method and let J( = \co\s n /oo • Observe that ^# is an

ideal of /^ and Co ç Jf. S also generates a filter & of subsets of N. In

particular

9- = {A ç N: Síxa) - 1} = {A 5 N: X* €^T}.

We can use 9 to generate a set corresponding to S in N* = /?N\N. Recall

that N* can be identified with the set of all free ultrafilters on N, and if WÍA) =

{Q: Q is a free ultrafilter, A e £1} = AßN nN*, then {WÍA): A ç N} is a basis
for the topology of N* [19]. Set JT = 0{W(A): A e 9}. J? is called the
support set of S.

We note that if p, 9, JÍ, and 3Í are generated by a given R-type summa-

bility method S, they are different descriptions of the same object and that one

can pass from one description to the other. For instance, if ^# is an ideal of

loo that contains Co , then r={^çN:^ or XaC € ^#} is a field of subsets

of N and the mapping p: Y -» {0, 1} defined by píA) = 1 if XaC e J( and
PÍA) = 0 if xa e Jf is a complete finitely additive measure that satisfies the
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criterion of Definition 1. Consequently, one could use ^# to define related no-

tions of convergence in density and statistical convergence. Observe that if Jf

had been the ideal generated by an R-type summability method then the mea-

sure constructed above is just the measure generated by the R-type summability

method. Also note that if 9 is the filter generated by S, Y = {A ç N : A or
Ac e9}, and p: 9 -+ {0, 1} is defined by píA) = 1 if A e 9 and piA) = 0
if Ac e 9, then Y and p, respectively, are the field and measure generated

by S as the preceding section. We also record the following observation.

Proposition 4. Any nonempty closed subset of N* is the support set of an R-type

summability method.

Proof. Let ¿F be a nonempty closed subset of N* and let 9 = {A ç N: X c

WÍA)}. Since %f ^ 0, 9 is a filter. Let p be the measure generated by 9.

Since MT = f){WiA): A e 9} = C\{WÍA): píA) = 1}, X is the support set
of convergence in /¿-density and /¿-statistical convergence.

Now let Q and R be two R-type summability methods. Write Q < R if
\c\q Q \c\r and Q and R are consistent on the bounded summability field of

Q, i.e., ¿R(x) = Q(x) for all x e \c\q n /oo • Now let J? be a collection of /?-

type summability methods and suppose (i?, <) is a lattice. Let c%- be the set

of all bounded sequences for which there is a Q in 2C such that x e \c\q , and

define A(x) = Q(x). Note that X is well defined: if x e c^ and R and ¿2 are

zR-type summability methods with the property that x G \c\r and x c\c\q, then

x 6 \c\rvq and A(x) = ¿R(x) = Q(x) = (/? V Q)(x). Observations similar to the

preceding one can be used to establish that A is an .R-type summability method.

Note that the inclusion requirement occassionally yields the consistency require-

ment. For instance, if each element of 5? is generated by a nonnegative regular

matrix method, then the Bounded Consistency Theorem [21, p. 88] yields that

it suffices to show \c\q ç \c\r to show that Q < R. Chun and Freedman [5]

have also established a bounded consistency theorem for the strong summability

fields of R-type summability methods that includes the preceding observation

and can be applied to a broader class of ¿R-type summability methods.

Before moving on to the substance of this section, we introduce one more

iR-type summability method. Let G be an infinite subset of N and suppose

G = {nx, n2, ...} where nx < n2 < ■ ■ ■ and let cq = {x e co : lim; xn, exists}.

Define y(x) = lim,x„, for all x € cq . For the obvious reason, y is called the

subsequence method generated by G. One can establish that a subsequence

method is an ¿R-type summability method either directly or by showing that it

is generated by a regular nonnegative matrix method. We also note that if yx ,

y2 are the subsequence methods generated by Gx and G2, then yx <y2 if and

only if cg¡ Ç cg2 , which occurs if and only if \G2\GX | < oo .

If 9 is a filter, we can use 9 to generate a lattice of subsequence methods.

Let J? = {y: G e 9}. Note that if yx, y2 6 SF- are generated by Gx and
G2, then the supremum of 71 and y2 is the subsequence method generated

by Gx n G2 e 9. Also note that if 9 is the filter generated by an iR-type

summability method, convergence in /¿-density is equivalent to convergence

with respect to the lattice of subsequence methods generated by 9 .

Before giving the promised characterization, we need to state a few more

definitions.
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Definition 5 (Additive property for null sets). The measure p has the APO if,

given a collection of null sets {Aj}iem ç r, there exists a collection {/?7-},-eN ç Y

with the properties \A¡ A B¡\ < oo for each i e N, B = \J™B¡ e Y, and

PÍB) = 0.

Definition 6. Let X be a topological space and let Mf bea closed subset of X.

Then %? is a P-set if %? is in the interior of every G¿ that contains %".

Definition 7. Let 9 be a filter, y has property (A) if given any countable

subset {Aj} of 9, there exists an A e9 such that |^V4;| < oo for each j.

We also need to recall a few elementary results that appear in [7]. If

Dß = {x € loo '■ x is convergent in /¿-density to 0},

Sfi = {x e loo '■ x is /¿-statistically convergent to 0},

then Dß and Sß are ideals in /^, Co ç Dß ç Sß, is the closure of Dß in

loo ■ We also recall that if S? is an ideal of /<*> that contains Co and /¿ is

the measure generated by 9, then Dß ç & c Sß. As in [7], the problem

of characterizing the measures for which /¿-statistical and convergence in p-

density are equivalent is the same problem as characterizing the measures for

which Dfi is closed in loo ■

Theorem 8. Let S bean R-type summability method. The following are equiv-

alent:

(a) // p is the measure generated by S, then p-statistical convergence and
convergence in p-density are equivalent.

(b) If Jf is the ideal generated by S, then the closure of Jf in l^ contains

no proper dense subideals that contain Co ■

(c) p has the APO.
(d) If 9 is the filter generated by S, then 9 has property ( A).
(e) If f% is the support set of S, then f% is a P-set.

(f) If S? is the lattice of subsequence methods generated by S, then every

countable subset of 3? has an upper bound in SC.

Proof, (a) implies (b). We establish the contrapositive. Let Jf be the ideal

generated by S and suppose that ^ is a dense proper subideal of Jf that

contains Co. Since Jl. and ^ contain the same set of sequences of 0's and

1*8, they both generate the same measure. Our previous remarks assert that

Dß c 5? ç ;# ç Sß . Since S ¿ 3#, it follows Dß^Sß.
(b) implies (c). Now we show that Dß = Sß , then p has the APO. Note that

if Dß = Sß then Dß is closed. Also note that, via a standard disjointification

argument, it suffices to show that APO is satisfied for disjoint collections of null

sets. Let {A„} ç r be a collection of pairwise disjoint null sets. Define vec0

by v, = l/i and define z" by z" = LZ"=xyiXA, ■ Note that (z") is Cauchy in
loo , hence there is a z c loo such that \\zn - z\\ tends to 0 as n tends to infinity.

Note that zk = l/i if k e Aj and zk = 0 if k <£ \J^° A¡. Since Dß is closed,
we have that z e Dß and hence there exists a B e Y such that p(B) = 0 and

zxbc e c0.

Select TYi < N2 < ■■■ such that if k > N, and \zk\ > l/i, then k e B.
Set Bi = {k:k c Ai, k > N¡} U {k: k e B, A^,_, < k < N¡}. It is clear that
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\A¡ A B¡\ < oo , B¡ ç B ,and B ç [J™ B¡ (hence ß = {J™ B¡). This shows that
p has the APO.

(c) implies (d). Let {Aj} ç 9 and set D¡ = ACj. Since piDk) = 0 for all k

and /z has the APO, there exists a sequence {Bk} of /¿-null sets such that, if

B = \JBk , then /¿(¿?) = 0 and \Bk l\Ak\<oo.LetA = Bc. Note that Bc\Bck
is empty for all k and hence ^V4* S A\ÍDk UBk)c C AkABk for all zc . Since
Ak A Bk is finite, y has property (A).

(d) implies (a). Suppose x is /¿-statistically convergent to 0 and let An =

{k: \zk\ < l/n}. Note that piA„) = 1 and hence A„ e 9 for all n. Pick
A € 9 such that |/4\/4„| < oo . Observe that xxa is a null sequence and hence

x is convergent to 0 in /¿-density. Since Dß = Sß , (a) holds.

(d) implies (e). Recall that Jt = Ç){WiA): Ae9} and suppose that S? c
fl Uk where each Uk is open in N*. Since JT is compact, there is an Ak ç N

such that S? ç WÍAk) ç Uk for each k e N. Suppose 9 has property
(A), there is an A ç N such that |^V4/t| < c« for all k. It follows that

JT c WÍÁ) C f| W{Ak) çf]Uk, and hence JT is a P-set.
(e) implies (f). Let (aK) ç J? and suppose aK is generated by Ak e 9.

Since ^ is a P-set and ^ ç f| WiAk), there is an open set (7 such that

«^ Q U ç f| WiAk). Now, since ^ is compact, we may assume U = WÍA)

for some ^ÇN. Using properties of ultrafilters it can be shown that A &9.

Now WÍA) C WÍAk) for each k implies that M\^K| < oo and hence ak < a
for all k.

(f) implies (d). Clear.

The definition of the additive property of null sets was adopted from a similar

definition for densities [10] and was given in [7] (where the equivalence of (a),

(b), and (c) was established). The support sets of multiplicative summability

methods, obtained from matrices and otherwise, have been studied by a number

of authors [1, 12, 13, 18]. Atalla, in particular, used property (A) of filters to

establish that the support sets of matrices are P-sets [1]. Another connection

between a (perhaps) stronger additive property of densities and p-points has

also been established by Mekler [17].
Although the primary intent of the preceding result was to characterize mea-

sures for which /¿-statistical convergence and convergence in /¿-density are

equivalent, the equivalence of (b) and (e), in conjuction with Proposition 4,

appears to give a new characterization of P-sets in N*.

Corollary 9. Let p be a measure with the APO. If (xr) is a countable collection

of sequences that are convergent in p-density, then there exists X: N —» N such

that lim„x^n) exists for each r and /¿({A(zz): n e N}) = 1.

Proof. Let 9 be the filter generated by convergence in /¿-density. Since each

xr is convergent in /¿-density, there is an Ar 6 9 such that xr e cA <■ ■ Since

9 has property (A), there is an A e 9 such that M\^4r| < oo for each r,

i.e., c^r ç cA for each r. Suppose A = {nx,n2, ...} where nx < n2 < ■ ■ ■

and X: N —> N satisfies A(zc) = nk for all k. Now limKx^(fc) for each r and

PÍ{Xík):kef^}) = píA) = l.

Corollary 10. Let S be an R-type summability method and let p be the measure

associated with S. If p has the APO, then S is equivalent to a lattice of

subsequence methods on the bounded strong summability field of S.
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Proof. Let Jz? be the lattice of subsequence methods generated by the filter

generated by S. If x is in the bounded strong summability field of S, then x

is /¿-statistically convergent and consequently, since p has the APO, convergent

in /¿-density and summable by Sf .

Let T be a nonnegative regular summability method and p be the measure

generated by T. Observe that convergence in /"-density is precisely conver-

gence in /¿-density and the support set of strong /"-summability is

oo

[\{WÍA):AC^, limYltn,kXAÍk) = l}.
K=l

Proposition 3.2 of [10] now shows p has the APO. A similar proof that p has

the APO can also be found in [7]. Alternatively, Henriksen and Isbell [13] have

shown that the subset of N* generated by p is a P-set and hence, via theorem

8, p has the APO. The observation Dß c |co|r n loo Q Sß now yields that

strong /"-summability, /¿-statistical convergence, and convergence in /¿-density

are equivalent on the bounded sequences.

It also follows that, for a nonnegative regular matrix method T, the hypoth-

esis of Corollary 9 can be replaced with "If (xr) is a countable collection of

bounded sequences that are strongly /"-summable" or "If (xr) is a countable

collection of sequences that are /"-statistically convergent" and the conclusion

holds when p is the measure generated by T. Similarly, Corollary 10 can be

used to show that the bounded strong summability field of a nonnegative regular

matrix method can be described as the bounded summability field of a lattice

of subsequence methods. Also, Proposition 3 now yields the following Cauchy

criterion for bounded strong /"-summability.

Corollary 11. Let T be a nonnegative regular summability method and x = (xK)

be a bounded sequence. Then x is strongly T-summable if and only if for every

e > 0 there is a nie) e N such that if Aie) = {k: \xk - x„(£)| < e} then

limn¿ZT=itn,kXA(C)ík) = 1.

In closing, we note that while not every .¿R-type summability method is gener-

ated by a nonnegative regular matrix method, if often happens that the bounded

strong summability field of a nonmatrix RSM coincides with the bounded strong

summability field of a nonnegative regular summability matrix. For instance, if

T is the Cesaro matrix the sequences that are convergent in /"-density cannot

be given a locally convex FK topology and hence are not the convergence do-

main of any matrix method [6] yet the bounded sequences that are convergent

in /"-density are precisely the bounded strongly Cesaro summable sequences.

Note that Theorem 8 indicates that if we can find a measure that does not

have the additive property for null sets, then the bounded summability field

of convergence in /¿-density is not the bounded strong summability field of a

matrix method. An example of such a measure is given in [10]. If we accept

the Continuum Hypothesis, it is possible to find iR-type summability methods

that have bounded strong summability fields that are not the bounded strong

summability field of a matrix and generate measures with the APO. Atalla [3]

has shown, given the Continuum Hypothesis, that there are P-sets in N* that

are not the support set of a matrix method. If we let ffî be such a set and p

be the measure constructed in Proposition 4 then, via Theorem 8, p has the
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APO and the bounded strong summability field of /¿-statistical convergence is

not the bounded strong summability field of a matrix method.
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