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CYLINDER FUNCTIONS IN THE FRESNEL CLASS
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(Communicated by Andrew M. Bruckner)

Abstract. In this paper we consider the class of cylinder functions on abstract

Wiener space B and give necessary and sufficient conditions of cylinder func-

tions on B to be in the Banach algebra ¡?(S) (resp. 5* {B)) of analytic (resp.

sequential) Feynman integrable functions on B . The results here subsume

similar known results obtained by Chang, Johnson, and Skoug in the setting of

Hilbert and Wiener spaces.

1. Introduction and preliminaries

Let ÍH, B ,u) be an abstract Wiener space where H is a separable Hilbert

space with the inner product ( • , • ) and the norm | • | = y/i ■ , ■), which is

densely and continuously embedded into a separable Banach space B with the

norm || • ||, and v is the abstract Wiener measure on the Borel cr-algebra <B(P)

of B that is generated by the Gauss cylinder set measure on H with mean

zero, variance one. As H is identified as a dense subspace of B , we identified

the topological dual B* of B as a dense subspace of H* = H in the sense that

for all y in B* and x in H, (y, x) = (y, x) where ( • , • ) is the B* - B

pairing. Thus we have a triple B* c H c B. For more details, see [16]. Let R"

and C denote an zz-dimensional Euclidean space and the complex numbers,

respectively.

Let {ej ; j > 1} be a complete orthonormal set in H such that e/s are in

B*. For each h G IT and x G B, we define

n

(A, x)~ = i™ Y\(h, ej)íe¡, x)
n—»oo ¿—t

j=l

if the limit exists and = 0 otherwise. It is well known that for each (/z ^ 0)

in H, (/z, • )~ is a Gaussian random variable on B with mean zero, variance

\h\2.
Let MÍH) be the class of all C-valued Borel measures on H. Then ¿V/(//)

is a Banach algebra under the total variation norm where convolution is taken
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as the multiplication. The Fourier transform of p in Mip) is defined for all

hx in H by

(1.1) pihx)= [ exp{i{h,hx)}dpih).
JH

The Fresnel class £(//) of functions on H is defined [1, p. 17] as the space of

all Fourier transforms of elements of MÍH).
Given two C-valued measurable functions F and G on B, F is said to

be equal to G s -almost surely (s-a.s.) if for each a > 0, v{x G B : Fíax) ^

Giax)} = 0 (for more detail, see [8, 11]). We write that F « G (resp. F « G)

if F = G s-a.s. (resp. if F « G and furthermore if Fix) = G ix) for all

x e H). Both relations « and ~ are clearly equivalence relations. We use the

notation [F] for the equivalence class of F with respect to the relation «.

We also use the same notation [F] for the relation ~.

The Fourier transform p of the form (1.1) can be extended to B uniquely
by

/T(x)= / exp{iih,xr}dpih).
JH

We shall consider the following two Fresnel classes of functions on B given by

SÍB) = {[F] : Fix) « ß~{x), p G MÍH)}

and

TÍB) = {[F] : Fix) s fT(x), P G MÍH)} .

As is customary, we think of the elements of #(#) (#*(.£?)) as functions on B

rather than equivalence classes. It was shown in [14, 15] that #(5) and #*(/?)

are Banach algebras with norm ||F|| = \\p\\ and that the elements of 5(5) (resp.

3*iB)) are analytic (resp. sequential) Feynman integrable.

A function F is a cylinder function on B if there exist cpx, cp2, ... , tpk c H

such that

(1.2) Fix) = fii<px , xr ,i<p2,xr,..., icpk , x)~),

where / is a Borel measurable function on Rk . It can be shown that there

exists a linearly independent subset {hx, h2, ... , hn} of H such that F , with

the form (1.2), is written as

(1.3) Fix) = ipiihx, xr ,ih2,xr,..., ihn , x)~),

where ^ is a Borel measurable function on R" . Thus we lose no generality in

assuming that every cylinder function on B is of the form (1.3).

Let /z(^ 0) G H and F: B -» C be a cylinder function on B defined by
Fix) = \piih,x)~) where ip is in L'(R') but not in L°°(R'). Then it is
easy to see that F is not in $ÍB). Thus we see that every cylinder function

on B is not necessarily in #(2?). Motivated by this fact and the works of

Chang, Johnson, and Skoug [4-7], we consider the class of cylinder functions

on abstract Wiener space B and give necessary and sufficient conditions for

the cylinder functions on B to be in a Banach algebra £(i?) (resp. $*(B)) of

analytic (resp. sequential) Feynman integrable functions on B . The results here

subsume similar known results given in [4, 5] by Chang, Johnson, and Skoug.

We finally apply our results to a classical Wiener space C[0, t] to obtain results
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in [4, 5] as corollaries and obtain various functions on C[0, t] that are Feynman
integrable (cf. [6, 7]).

2. Necessary and sufficient conditions

for cylinder functions on b to be in #(5)

In this section we begin with two necessary lemmas to prove the main results
of this paper.

Lemma 2.1. Let (//, B, v) be an abstract Wiener space. Let {hx, h2, ... , h„}

be a linearly independent subset of H and X : B —> R" be defined by

(2.1) A(x) = ((/z,, x)~ ,ih2,x)~,..., ih„ , x)~).

Let y/ and n be C-valued Borel measurable functions on R" . Then

(i)  y/ = n a.e. on Rn if and only ify/oX^noX.

(ii)  y/ = n everywhere on R" if and only ify/oX~noX.

Proof, (i) Let J = {x c B: ipßix)) ¿ i/(A(jc))> and D = {r cRn: <¿/(r) ¿
rjír)}. Then we have J = {x c B: A(jc) c D}. We note that pJ = k~\pD)

for all p > 0. Since A is a nondegenerate Gaussian random vector, we see

that v o X~l is equivalent to Lebesgue measure on R" . Hence for all p > 0,

vipj) = v o X~\pD) = 0 if and only if pD is null in R" . Therefore y/ = r\
a.e. on R" if and only if (¡¿olaj/oA.

(ii) Since UH) = Rn , we have that y/ = n on R" if and only if y/ o A(x) =

n oXix) for all x G H. Further, we have that y/ ° X = n oX on H if and only

if y/iX(x)) « rjiXix)) for all x c B . Hence we complete the proof.

Lemma 2.2. Let {hx, h2, ... , h„} be a linearly independent subset of H. Let

p G MÍH) be such that

[Tix + p) «/z~(x)   for every p c[hx, h2, ... , hn]x,

where [A]1 is the orthogonal complement of the subspace of H spanned by A.

Then there exists a measure o G M(R") such that

p~ix) = ¿j((/zi , x)~ ,ih2,x)~,..., ih„ , x)~).

Proof. Let p eRl and p G [hx , ... , /z«]-1 be arbitrary but fixed. Then by the
hypothesis, p~ix + pp) « pix). Thus we have

/ exp{z'(/z, x)~}dpih) « / exp{z'(/z, x)~}dpPih),
JH JH

where dpp(h) = exp{ip{h, p)} dpih). Hence we have that p~ « p~. By

Proposition 2.1 in [14], it follows that p = pp . By using a theorem in [17, p.

133], there exists a C-valued measurable function g with its absolute value 1

such that dpih) = gíh)d\p\íh). Thus dp = dpp can be written as

gih)d\p\ih) = exp{ipih, p)}gih)d\p\ih).

By the Radon-Nykodym theorem it follows that exp{ipih, p)} = 1 for |zz|-a.e.

h . Since p was an arbitrary real number, we must have (/z, p) = 0 for \p\-a.e.
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h . Further, since p was also an arbitrary element in [hx , h2, ... , hn]-1, we

have that

hc[hx, h2, ... , K]^ = [hx, h2, ... , h„]   for \p\-a.e. h.

Therefore the measure p is supported by [hx, h2, ... , hn].

Now let cp : [hx, h2, ... , hn] —» R" be the homeomorphism defined by cpih) =
Hh,h\), ... , ih, h„)). Then the measure o = p o tp~x is in A/(R"). Since p

is supported by [hx, ... , h„\, we have

p~ix) =  / exp{z'(/z, x)~}dpih) = / exp{z'(/z, x)~}dpih)
JH J[A,.km\

=  j exp \ i\ V(/z, A^A; ,x\    \ dpih)
■/[*..-.,*.] (    \U j    )

=   i exp{iicpíh),Xíx))}dpíh)
J[ki,...,kx]

=   I   exp{iiy,Xíx))}dpocp-líy) = oíXíx)),
JR"

where A(x) is as in (2.1).

Theorem 2.3. Let {hx, h2, ... , h„} be a linearly independent subset of H. Let

F: B —► C be a cylinder function on B as in (1.3). T/zezz

(a) F is in 3ÍB) if and only if there exists a measure a c M(Rn) such that

à = y/ a.e. on R" .
(b) F is in $*ÍB) if and only if there exists a measure o c M(SL") such

that ô = y/ everywhere on R" .

Proof, (a) Let F c 5(5). Then there exists a measure p c MÍH) such that

p~ix) « Fix). Since ih}■■, x + p)~ = (A;, x)~ for all j = l,...,n and

for all p G [hx, ... , hn]1-, we clearly have that /¿~(x + p) ~ /z~(x) for all

p c[hx, ... , hn]1-. Hence by Lemma 2.2, there exists a measure a c M(R")

such that

p~ix) = ff((Al , x)~,..., (A», x)~),       xcB.

Thus we have

\pííhx ,x)~,...,ih„, x)~) « ¿j((/zi, x)~,... ,fh„, x)~).

Hence by Lemma 2.1(i), we have that y/ = à a.e. on R" .

Conversely, let o G M(R") be such that y/ = à a.e. on R" . Then by Lemma

2.1(i), we have

y/Hhx ,x)~,...,ihH, x)~) « ct((Ai , x)~,..., ih„, X)~).

Define 4>: R" -* H by cA((r,, r2, ... , rn)) = £*., r;/z7. Set zz = ¿jo</>-• . Then

/z is in A/(i/) and is supported by [/Zi, h2, ... , h„]. Hence we have

p~ix)=  [ exp{iih,x)~}dpih)= f e%p{i(h', x)~}e<ro<jrlih)
JH hk.A»]

=   /  exp{ii<t>ir),xT}doir) = aiihx,xy,...,ihn,xD
JR"

from which F is in 5(5).
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(b) Let F G d* ÍB). Then there exists a zz G MÍH) such that

p~ix) « y/iihx ,x)~,...,ih„, x)~).

So pih) = ipiihx, h), ... , (A„ , A)) for all hcH. Using Theorem 8 of [4], we
have a ¿r G Af(R") such that (¿¿ = r> on R" .

Conversely, let y/ = ô on R" with a G ¿V/(R"). Then by Lemma 2.1 (ii),

y/iihx ,x)~,...,ih„, x)~) « â((A., x)~,..., iha, x)~). Let p = o o ci)-1
where 0 is as in the proof of (a). Then p g MÍH) and

pTíx) = dííhx ,x)~,...,íh„, x)~)

from which F is in 5* (2?).

Remark 2.1. An alternative proof of (b) can be given as follows: Let f = F\h ■

Then / G £(//) if and only if F G y (5) (see [15]). But by Theorem 8 of [4],
/ G $ÍH) if and only if y/ = ô on R" where o G A/TR"). Hence the proof of
(b) follows.

3. Corollaries

In this section we apply our results in the preceding section to classical Wiener

space to obtain results in [4, 5] as corollaries and obtain further corollaries.

For simplicity, we consider the case (//, B, v) = (C'[0, t], C[0, t], mw),

where C[0, t] is the Wiener space, mw is the Wiener measure, and C'[0, t] =

{x G C[0, r]: xis) = ^fiu)du, f c L2[0, t]} is a real separable infinite-

dimensional Hilbert space with inner product (xi, X2) = J0' Dxx (t) • Dx2ir) dx,

where Dx = dx/dx (see [16]).
We first note (see [14, 16]) that if B = C[0, t] and H = C'\0, t], then for

hcH and x cB ,

ih,x)~ = j Dhis)dxis),
Jo

where /0 Dhís) dxis) is the Paley-Wiener-Zygmund integral of Dh .

In [2, 3] Cameron and Storvick introduced Banach algebras 5 and S* of

functions on C[0, t] given by

S= ¡F:Fíx)x f       expíi Í vis)dxis)\ dpiv), p e 7W(L2[0, t])\

and

S* = [f: Fix) « /        expíi f vis)dxis)} dpiv), p c A/(L2[0, t]) ,
l JL2[0,l] i   JO )

Fix) = [       expíi f vis)dxis)} dpiv) for all x G C'[0, t] } ,
JL2[0,t] I   JO ) )

and then showed [2, 3] that the analytic (resp. sequential) Feynman integral

exists for all elements of S (resp. S*).
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Remark!.1. (l)Let I be the unitary operator from L2(R) onto C'[0, t] given

by Ivix) = ¡0Tvis)ds. If

Fix) « /        expli     vis)dxis)> dpiv)
JL2[0,t] I   Jo J

for some p G M(L2[0, t]), then we have

Fix) « /        exp{z'(A, x)~}dpo I~lih).
Jc[0,t]

Conversely, if

Fix) « /        exp{/(A, x)~}dnih)
Jcm.nIC'[0,t]

for some r\ g M(C[0, t]), then we have

Fix) « /        expli     vís)dxís)> dn o Iiv
Jl2[0,í\       y Jo j

)•

Thus we have that F c S if and only if F c 5(C[0, t]) (see [14]). Similarly,
we have that F c S* if and only if F g 5*(C[0, t]).

(2) Let A: C'[0, t] -> C'[0, t] be the linear operator defined by

(3.1) ÍAg)íx)= f giu)du.
Jo

Then we see that the adjoint operator A* of A is given by

(3.2) ÍA* g)ix) = git)x \   giu)du.
Jo

It is easily shown that A* is injective.

Throughout the rest of this section we assume that y/ is a C-valued Borel

measurable function on R" .

Corollary 3.1. Let Fx : C[0, t] -♦ C be given by

Fxix) = y/(      vxis)xis)ds, ... ,      vnis)xis)ds) ,

where {vx, ... ,v„} is a linearly independent subset of L2[0, t]. Then

(1) Fx g S if and only if y/ = ô a.e. on R" where a c Af(R").
(2) Fx g S* if and only if y/ = ô on R" where a c M\%n).

Proof. Let A7(t) = JQTVjis)ds for j = 1, 2, ... , n. Then h¡ G C'[0, t] and
{hx, h2, ... , hn} is a linearly independent subset of C'[0, t]. Let /c/(t) =

ÍA*hj)íx) for j = 1, 2,... , n, where A* is as in (3.2). Since A* is linear and

injective, {kx, k2, ... , k„} is an independent subset of C'[0, t]. Further we

note that

iA*hj,xr= [ DÍA*hj)ís)dxis) = f xís)Vjís)ds.
Jo Jo

Henee Fxíx) = ipííA*hx, x)~, ... , ÍA*h„, x)~) is a cylinder function on

C[0, t]. Therefore the proof follows by Theorem 2.3.
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Corollary 3.2. Let F2 :C[0,i]-»C be given by

F2ix) = y/ ( /   xis)ds, ... ,  /    xis)ds j ,

where 0 < sx < s2 < ■ ■■ < sn < t. Then the conclusions (1) and (2) of Corollary

3.1 are true for F2.

Proof. Apply Corollary 3.1 with v¡• (í) = 1 m,s¡\is) for j = 1, 2, ... , n .

Corollary 3.3. Let F3 : C[0, t] -» C be given by

Fiix) = y/ [ — /   xis)ds,  - /   xis)ds, ... ,- /     xis)ds 1 ,
\Sl Jo sl - s2 Js, sn -SH-l Jsn_, j

where 0 < sx < s2 < ■ ■ ■ < sn < t. Then the conclusions (1) and (2) of Corollary

3.1 are true for F$.

Proof. Apply Corollary 3.1 with

vjis) = -r—T~ V.'y](J)
Sj        Aj-1

for f = 1, 2, ... , n , where so = 0.

Remark 3.2. Let n be a finite Borel measure on [0, t]n . Let 6: [0, i]"xR" -» C

be given by

ö(r, zz) = /   exp{z'(zz, iü)}¿¿'¿7r-(rzj),

where {a?, re [0, r]"} is a family from M(R") such that for every 2? G «8(R")

OfiB) is Borel measurable in r, and where ||rj^|| G L'([0, /]", z/). Then by

Theorem 1 of [7], we have that the functions on C[0, t] given by

F4(x) =  /        dis,   /    xis)ds,...,  /    X(5)¿Í5 ) úfz/(5)
■/[O.í]"     \     Jo Jo J

Fsi*) = /       ^(^'/   xis)ds,...,        xis)ds\ dnis)
J[o,tr   \   Jo Js„^, J

are both in S\ Furthermore, exp{2r4(x)} and exp{2r5(x)} are also both in 51.

Corollary 3.4. Let F6 : C[0, t] -+ C be given by

and

Kix) y/ ( / vxis)dxis), ... ,      v„is)dxis)j ,

where {vx, ... ,vn} is a linearly independent subset of L2[0, t]. Then the con-

clusions (1) and (2) of Corollary 3.1 ¿zr¿? true for F(,.

Proof. Let I be as in Remark 3.1. Then we have

F6(x) = y/HIvi, x)~ , ... , ilv„ , x)~).

So by Theorem 2.3 it follows that F6 c 5(C[0, t]) (resp. 3*iC[0, t])) if and
only if there exist a ct G M(Rn) such that y/ = ô a.e. (resp. everywhere) on

R" . Hence from Remark 3.1 we complete the proof.
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Corollary 3.5. Let 0 < sx < s2 < ■ ■ ■ < sn = t be a partition of [0, t] and let

FjÍx) = ipixisi), xís2) -xísx), ... ,x(5„)-x(s„_i)).

Then the conclusions (1) and (2) of Corollary 3.1 ¿zr¿? true for F-j.

Proof. Apply Corollary 3.4 with Vjis) = ][Sj_l Sj] is) for j = 1, 2, ... , n , where

5o = 0.

Corollary 3.6. Let 0 < sx < s2 < ■■ ■ < s„ = t be a partition of [0, t] and let

Psi*) = WÍXÍSX), X(52) , • • • , XÍSn)) .

Then the conclusions (1) and (2) of Corollary 3.1 are true for Fg.

Proof. Apply Corollary 3.4 with Vjis) = ][o,sj] is) for j = 1,2, ... , n .
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