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A FUNCTIONAL ANALYSIS PROOF
OF THE EXISTENCE OF HAAR MEASURE

ON LOCALLY COMPACT ABELIAN GROUPS

ALEXANDER J. IZZO

(Communicated by Andrew M. Bruckner)

Abstract. A simple proof of the existence of Haar measure on locally com-

pact abelian groups is given. The proof uses the Markov-Kakutani fixed-point

theorem.

It is very well known that every locally compact group has a Haar measure

and that the Haar measure is unique up to a positive multiplicative constant.

Several different proofs have been given, all of them somewhat difficult. (See

[N] for two proofs as well as references to others). In most of these proofs,

the existence and uniqueness of Haar measure are established separately. For

compact groups, a simple proof of the existence and uniqueness of Haar measure

was given by von Neumann [vN], and his proof can be made even simpler by

using the Kakutani fixed-point theorem (see [R2]). For locally compact abelian

groups, uniqueness of Haar measure is easily established (see [Rl, p. 2]). The

purpose of this short note is to present a simple proof of the existence of Haar

measure for these groups. The proof will make use of the Markov-Kakutani

fixed-point theorem, which we recall below. It is known that this fixed-point

theorem can be used to prove that every locally compact abelian group has an

invariant mean (see [P, p. 113]). For compact groups an invariant mean and a

Haar measure are the same thing, but for noncompact groups this is obviously

not the case.

Theorem (Markov-Kakutani). Let K be a nonempty compact convex subset

of a i Hausdorff ) topological vector space. Let &" be a commuting family of

continuous affine mappings of K into itself. Then there exists a point p £ K

such that Tp = p for all T £ f?.

A proof can be found in [C, pp. 155-156]. (There the theorem is stated only

for locally convex spaces, but local convexity is not needed in the proof.)

We will also need two lemmas.
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Lemma 1. Suppose G is a topological group and A is a neighborhood of the

identity in G that is symmetric ( i.e., A-1 = A). Then there exists a subset S

of G such that for each g in G the set gN • A contains at least one element

of S and the set gN contains at most one element of S.

Proof. Let   & be the collection of all subsets T of G such that

p-xq(¿N-N   for all p , q £ T.

By applying Zorn's lemma, we see that & has a maximal element »S. Now if

g £ G, then there is some 5 in S such that g~ xs £ N • A, for otherwise the set

51 U {g} would be a member of 2? strictly containing S. Moreover, if there

were two distinct points sx, s2 in S such that both g~xsx and g~xs2 were in

A, then we would have sx~xs2 = sx~xgg~xs2 £ A-1 • A = A-A, a contradiction.

Thus, there is at most one i in 5 such that g~xs £ A.   D

Lemma 2. Let X be a vector space, and let X* denote the space of all linear

functionals on X with the weak*-topology i i.e., the weak topology induced by

X). If K is a closed subset of X* such that for each x £ X the set {Ax : A G AT}
is bounded, then K is compact.

The proof of this lemma is very similar to the proof of the Banach-Alaoglu

theorem and is essentially contained in [DS, pp. 423-424]. A more succinct

statement of the conclusion is that every closed bounded set in X* is compact.

Proof of the existence of Haar measure on locally compact abelian groups. Let G

be a locally compact abelian group. Let CciG) denote the space of compactly

supported continuous functions on G, and let CdG)* denote the space of all

linear functionals on CC(C7) with the weak*-topology (i.e., the weak topology

induced by CdG)). If / G CC(G) and a £ G, then fa (the translate of / by
a ) is defined by faix) = fia+x). For each a in G, define Ta : CdG)* —>CC((7)*
by the equation

iTaA)if) = Aifa)       (A g CciG)*, f G QiG)).

Then each Ta is a continuous linear operator. To establish the existence of

Haar measure on G we must simply show that there is a nonzero positive

linear functional on CdG) that is fixed by every Ta .

Fix a symmetric neighborhood A of the identity in G with compact closure.

Let K be the set of positive linear functionals A on CdG) that satisfy the

following two conditions:

(i)   A(/) < 1   whenever / is a nonnegative function in  CdG)  that is

bounded above by 1 and whose support is contained in a + A for some

a £ G, and

(ii)   A(/) > 1 whenever / is a nonnegative function in CC(C7) that is equal
to 1 on a + N + A for some a £ G.

Then K is clearly closed and convex in CdG)*. Moreover, by a partition of

unity argument every nonnegative function in CdG) can be written as a finite

sum of nonnegative continuous functions each of which has support in a + N

for some a £ G. It follows that condition (i) in the definition of K implies that

for each function / in CC(G), the set {A(/) : A G AT} is bounded. Therefore
by Lemma 2, K is compact.
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Let S be as in Lemma 1, and note that the functional that consists of a point

mass at each point of 5 (i.e., the functional / >-> J2seS fis)) is in AT. Thus
A is nonempty.

It is clear from the definition of AT that each of the operators Ta maps A

into itself. Hence, since the operators Ta ( a G G) form a commuting family,

the Markov-Kakutani fixed-point theorem shows that they have a common fixed-

point in A. Since all the elements of AT are nonzero positive linear functionals

on CdG), the proof is complete.   D
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