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Abstract. Recent investigations in the foundations of physics have shown that

a quantum mechanical influence function satisfies a generalized d'Alembert

functional equation. The present paper derives the solutions for this equation

on a topological linear space.

1. INTRODUCTION

D'Alembert's equation is one of the most important functional equations

[1-4, 7]. This equation was originally introduced as a tool for studying the

vibrating string problem and for axiomatic investigations of the parallelogram

law for addition of force vectors [5, 6]. It has been applied in noneuclidean

mechanics [4] and harmonic analysis [10]. A function icE^l is said to

satisfy d'Alembert's equation if

(1.1) u(x + y) + u(x - y) = 2u(x)u(y)

for all x, y e R. A classical result states that the only continuous solutions of

(1.1) are u(x) = 0, u(x) = cos ax , and u(x) = cosh ax [2, 4].

Recent investigations in the mathematical foundations of quantum mechan-

ics have resulted in a generalization of (1.1). In his studies of discrete models

for classical and quantum physics, Hemion introduced the concept of an influ-

ence u: R —► R [8, 9]. The function u provides a measure of the influence

between physical states (or configurations). By applying the principle of strong

causality (the future cannot influence the past), Hemion has argued that u must

satisfy the following causal condition

n n

(1.2) J2 "M = ° => X>(* + y¡) + u(x - y,)] = 0
¡=1 i=X

for all x e R. It is clear that (1.1) implies (1.2), so (1.2) provides an interesting

generalization of d'Alembert's equation. A physical interpretation of ( 1.2) states
that if a present total influence vanishes, then it still vanishes when future effects
are included.
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We shall find it useful to introduce the following closely related condition:

n m n

]T u(Xi) = ^2 u(y¡) =*• 5^[m(x + Xi) + u(x - x,)]

(1.3) ,=1 ,=1 ,=1

= Y^.u(x+yi) + u(x-yi)]
i=X

for all x e R. This condition can be given a physical interpretation similar to

that of (1.2). Of course (1.3) is also a generalization of (1.1). It will follow

from our work that (1.2) and (1.3) are equivalent if u is continuous and has a

zero. If in addition, u(0) = 1, then (1.1 )—( 1.3) are all equivalent.

Hemion has shown that if u: R —> R is periodic with period 2n, even,

continuous, monotone on [0, n], satisfies a condition slightly stronger than

(1.2), and w(0) = -u(n) = 1, then u(x) = cosx for all x e R. In this

paper, we present a vast generalization of Hemion's result. We cannot only

dispense with many of Hemion's conditions, but our theorem applies to a real

topological linear space V and gives a classification of solutions that is similar

to the classical result. Although the main application of our theorem is for the

case V p R, it may also be important when F is a Hubert space (Corollary

4) since quantum states are frequently represented by unit vectors in a Hubert

space.

2. Solutions of the functional equation

We now present our main result together with some corollaries. Let F be a

real topological linear space. A subset A ç V is balanced if tA ç A for |r| < 1

and absorbing if for every x e V there exists an e > 0 such that tx e A

for \t\ < e. Recall that every neighborhood of 0 is absorbing and includes a

balanced neighborhood of 0 [13]. We say that a map u: V —> R is Cl (C2) if
u satisfies (1.2) [(1.3)] for every x e V.

Theorem 1. If u: V —> R is continuous and C2, then there exists a continuous

linear functional f: V —> R such that either u(x) = u(0) cos f(x) for all x e V

or u(x) - w(0)cosh/(x) for all x e V. Moreover, f is unique in the sense that

if u # 0 and u(x) — u(fS)eosg(x) or u(x) = w(0) cosh g(x) for a continuous

linear functional g, then g = ±f.

Proof. We may assume u ^ 0, since otherwise, we are finished. We may also

assume u / 1 , since otherwise, we let / = 0 and again we are finished. If

w(0) = 0, then w(0) + u(0) = u(0). Applying (1.3) gives 4w(x) = 2u(x) for
every x e V. Hence, u = 0, which is a contradiction, so u(0) / 0. We may

assume that u(0) = 1, since otherwise, we could consider v = u/u(0) and v

satisfies the hypotheses of the theorem. We now consider two cases, either u

has a zero or does not.

Suppose u has a zero so that there exists a z e V such that u(z) = 0. Since

u(z) + u(z) = u(z), applying (1.3) gives

(2.1 ) u(x + z) + u(x - z) = 0

for all x e V. We now show that u is Cl. If J2u(yd = 0, then £«(y,) =
u(z). Applying (1.3) and (2.1) gives

Y^[u(x + y,) + u(x - y,)] = u(x + z) + u(x - z) = 0
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for every x e V. Hence, (1.2) holds so u is Cl. Letting x = z in (2.1) gives

u(2z) = -1, and replacing x by x - z in (2.1) gives u(x - 2z) = -u(x) for

all x € V. Assume that u(y) is rational and u(y) = s/t for integers s, t with

t ^ 0. Suppose u(y) > 0, in which case we can assume that s > 0, t > 0. Let

n = s + t, yx = ■ ■ ■ = ys = 2z, ys+x = ■ ■ ■ = yn= y. Then

n s n

J2 u(yi) = ¿Z u(yt) + zZ "to) = -*+tu(y) = ° •
i=l ¡=1 i=s+X

Applying ( 1.2) we have for every x e V

n

0 = ^[u(x + y¡) + u(x - y,)]

i=i

= s[u(x + 2z) + u(x - 2z)] + t[u(x + y) + u(x - y)]

= - 2su(x) + t[u(x + y) + u(x - y)].

Hence,

(2.2) u(x + y) + u(x - y) = (2s/t)u(x) = 2u(x)u(y).

Of course, this is d'Alembert's equation. If u(y) = 0 then (2.2) follows directly

from (1.2). Now suppose u(y) < 0, in which case we can assume that t > 0

and s < 0. Let n = \s\ + t, y> = • • • = yls\ = 0, yM+l = ■ ■ ■ = yn = y. Then

Z)Li u(yi) = \s\ + tu(y) — 0 • Applying (1.2) gives for every x e V

n

0 = 5^[u(x + yf) + u(x - y,-)] = 2\s\u(x) + t[u(x +y) + u(x - y)].

i=X

Hence,

u(x + y) + u(x - y) = -(2\s\/t)u(x) = 2u(x)u(y).

We conclude that (2.2) holds whenever u(y) is rational. Letting x = y in (2.2)

gives

(2.3) 1 + u(2y) = 2[u(y)]2

whenever u(y) is rational.

We now show that u is not identically 1 on any neighborhood N of 0. If

it were then applying (2.3) for y e N gives u(2y) = 2[w(y)]2 - 1 = 1, so u is
identically 1 on 27V. Continuing, u is identically 1 on 2nN for every positive

integer n. Since N is absorbing, we conclude that u = 1 on V, which is a

contradiction. We now show that for any neighborhood TV of 0 there exists

a y e N such that u(y) is rational and u(y) ^ 1. Indeed, let M ç N be a

balanced neighborhood of 0. Since u is not identically 1 on M, there exists an

x e M such that u(x) ^ 1. Now the set A = {tx: 0 < t < 1} is connected and

u\A is continuous. Hence, u(A) is connected so u attains every value between

1 and u(x) (the intermediate value theorem). Hence, there is a y e A such

that u(y) is rational and u(y) ^ 1. We next show that u cannot be identically

a constant c ^ 0 on any neighborhood. Indeed, suppose u(x) = c ^ 0 for all

x € N(w) when N(w) is a neighborhood of w . Now there exists a balanced

neighborhood N of 0 such that N + w ç N(w), and there is a y e N such

that u(y) is rational and u(y) ^ 1. Then w +y,  w - y e N(w), so by (2.2)
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2c = u(w + y) + u(w —y) = 2u(w)u(y) — 2cu(y).

Hence c = 0, which is a contradiction.

Now suppose u(y) is irrational and N(y) is a neighborhood of y . Since u
is nonconstant on N(y), as before, by the intermediate value theorem, there is

awe N(y) such that u(w) is rational. In this way we obtain a net wa such

that wa —>y and u(wa) are rational. Since u is continuous, by (2.2) we have

for every x e V

u(x + y) + u(x - y) = lim[w(x + wa) + u(x - wa)]

= Um2u(x)u(wa) = 2u(x)u(y).

We conclude that (2.2) holds for every x, y e V and, in particular, (2.3) holds

for every y e V . Letting x = 0 in (2.2) gives u(—y) = u(y) for all y e V, so

u is even.

Define g : V —> C by g(x) = u(x) + iu(x + z) where z is a zero of u. Then

for every x, y e V, applying (2.2), (2.1) and evenness gives

g(x)g(y) = u(x)u(y) - u(x + z)u(y + z) + i[u(y)u(x + z) + u(x)u(y + z)]

= u(x + y) + iu(x + y + z) = g(x + y).

Moreover, by (2.3) we have

\g(x)\2 = [u(x)]2 + [u(x + z)]2 = l.

Hence, g is a continuous character on V. It follows from a result in [ 11 ] that

there exists a continuous linear functional /: V —► R such that g(x) = e'f^

for all x e V. Hence u(x) = Re g(x) — cosf(x). In the general case, when

w(0) ^ 1 we obtain u(x) = w(0) cos f(x).

For the second case, u has no zero. Suppose there is a w e V such that

u(w) < 0. Now there exists a balance neighborhood TV of 0 such that w e N.

Since «(0) = 1 , by the intermediate value theorem there is a y e N such

that u(y) = 0. This gives a contradiction, so u(w) > 0 for all w e V.

Now assume that u(y) = s/t is rational, where s, t are positive integers. Let

x\ = •• • = xs = 0, yi = • • • = y, = y. Then

^2 "to) = tu(y) = su(0) = Y^ u(Xi).
i=\ i=\

Since u is C2, applying (1.3) gives for every x e V, t[u(x + y) + u(x - y)]

= 2su(x). Hence (2.2) again holds whenever u(y) is rational. By the same

argument used before, we conclude that (2.2) and (2.3) hold for every x , y e

V.
We now show that u(x) > 1 for all x G V. Let ax = 2~x¡1, and for any

integer n > 1 let a„ = [(a„_i + l)/2]'/2. We prove by induction on n that

u(x) > an for all x e V. Applying (2.3) we have

[u(x)]2 + \ + \u(2x) > \.

Hence u(x) > ax for all x e V, so the result holds for n = 1. Suppose the

result holds for the integer n > 1 . Applying (2.3) gives

[u(x)]2 = \ + IM(2x) > \(l+an),
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so u(x) > an+x for all x e V, which completes the induction proof. We next

show that an < 1 for all n. Indeed, ax < 1 and if a„ < 1 then a2+1 =
(an + 1)2 < 1 , so the result follows by induction. Finally, a„ is an increasing

sequence since

an = [i(tfM_, + I)]1'2 > [i(a„_, + a„_,)]1/2 = (a„_,)'/2 > an.x.

Letting L = liman , it follows that L2 = (L+ l)/2. Solving this equation gives

L = 1. We conclude that u(x) > L = 1 for all x € V.
Since u ^ 1, there exists a w e V such that u(w) > 1. Let c =

[2(u(w) - 1)]"1/2 and define g: V -> R by

(2.4) g(x) = u(x) + c[u(x + w/2) - u(x - w/2)].

Then a straightforward calculation (see [4, p. 220]) gives g(x + y) = g(x)g(y)

for all x, y e V. It follows that g(2x) = [g(x)]2 > 0 so g(x) > 0 for all
x e V . In fact, g(x) > 0 for all x e V. Indeed, if g(y) = 0 then g(x-l-y) = 0
for all x € V. In particular, g(0) = 0 but by (2.4), ^(0) = 1, which is a
contradiction. Letting f(x) = log#(x) > we have f(x+y) = f(x) + f(y) for all

x, y e V. Since / is continuous, we conclude that / is a continuous linear

functional on V . From (2.4) we have

g(-x) = u(x) - c[u(x + w/2) - u(x - w/2)].

Hence
, ^     g(x) + g(-x)     efW + e-«x) ,  .. ,

"(x) = 2- =-2-= cosn/(-x) •

Again, in the general case, we have u(x) = u(0) cosh/(x).

For uniqueness, suppose u ^ 0. If m = 1 then / = 0 is the unique solution,

so suppose «/ 1. Clearly, if g : V —> R is a continuous linear functional, we

cannot have

u(x) = u(0) cos f(x) — w(0) cosh g(x),

so suppose

(2.5) u(x) = u(0) cos f(x) - u(0)cosg(x)

for all x G V. Now there exists a neighborhood N of 0 such that |/(x)|,
|g(x)| < n/2 for all xeN + N [13]. It follows from (2.5) that if w e N + N
then g(w) = ±f(w). Now suppose x, y e N and g(x) = f(x) ^ 0 while

g(y) = -f(y)¿0. Then

g(x + y) = g(x) + g(y) = f(x)-f(y).

Now suppose g(x+y) = f(x+y). Then f(x)+f(y) = f(x)-f(y), which gives
the contradiction f(y) = 0. Similarly, if g(x + y) = -f(x + y), we obtain the

contradiction f(x) = 0. Hence either g(x) - f(x) for g(x) = -f(x) for all

x e N. Suppose the first case holds and w e V. Since N is absorbing, there

is a t e R \ {0} such that tw e N. Hence tg(w) = g(tw) = f(tw) = tf(w),
so g = f. Similarly, in the second case, g = —f. The proof is similar for the

case

u(x) = u(0) cosh f(x) = u(0) cosh g(x).   D
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Corollary 2. If u: V —► R is continuous, Cl, and has a zero, then there exists a

continuous linear functional f: V —> R such that u(x) = u(0)cosf(x).

Proof. This follows from the first half of the proof of Theorem 1.   D

Corollary 3. Let V be a real Hubert space with inner product (•, •). If u : V —»

R is continuous and C2, then there exists a y e V such that u(x) = w(0)cos(x,y)

or u(x) = w(0) cosh(x, y) for all x e V. Moreover, y is unique in the sense
that if u ^ 0 and either u(x) = «(O)cos(x, z) or u(x) = w(0)cosh(x, z) for

all x G V, then z = ±y.

Proof. This follows from Theorem 1 since every continuous linear functional

on V has the form f(x) = (x, y) for some y G V.   D

Corollary 4. Let V be a real Hubert space with inner product (•, •). If u: V —>

R is continuous, Cl, and has a zero, then there exists a y e V such that

u(x) = «(O)cos(x, y). If u ^ 0 then the elements ±7ty/2||y||2 are the unique

zeros of u with smallest norm.

Proof. We only need to prove the last statement. Notice that y ^ 0 since u

has a zero. Letting z = 7ry/2||y||2, we have

u(±z) = u(0)cos(±n/2) = 0,

so ±z are zeros of u. Let w be an arbitrary zero of u. Then 0 = u(w) =

«(O)cos(u;, y). It follows that (w , y) = «7t/2 where n is an odd integer. By

Schwarz's inequality

|n|a/2 = |(w,*>|<IM|M.
Hence

(2.6) ||ix;||>|«|7t/2||y|| = |«|||z||>||z||,

so ±z are zeros with minimal norm. If w is a zero of u with \\w\\ = \\z\\,

then by (2.6), n = ±1 so \(w , y)\ = n/2. Hence

Since we have equality in Schwarz's inequality, it follows that w = ±z .   D

We close with some remarks concerning the proof of Theorem 1. In the first

half of the proof, we showed that u was C1. Although this was not necessary

for the proof of Theorem 1, it is necessary for Corollary 2.

The bulk of the proof was to show that a continuous C2 (or Cl) function

satisfies d'Alembert's equation. After that, the proof was fairly standard. One

could proceed differently at this point by employing the following theorem [4,

12, 14].

Theorem 5. The general complex-valued solutions ofdAlembert 's functional equa-

tion on the cartesian square of an abelian group G are given by

u(x) = (h(x) + h(-x))/2

where h satisfies h(x + y) = h(x)h(y) for all x, y e G.

In our case, u is continuous and it follows that h is also continuous. One

can now argue that there exists a continuous linear functional /: V —► C such
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that h(x) = ejM for all x e V. It follows that u(x) = cosh/(x) for all

x G V. Letting fx and f2 be the real and imaginary parts of /, respectively,

we then have

u(x) = cosh[/,(x) + if2(x)]

= cosh/] (x) cos/2(x) - z'sinh/1(x)siny2(^)-

Since u(x) is real, one can further argue that either /i = 0 or ^ = 0. The
amount of work required in providing the details for this method is about the

same as that employed in the present proof.
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