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Abstract. In this paper we evaluate the conditional Yeh-Wiener integral

E(F(x)\x(s, t) = £,) for functions F of the form

F(x)=exp{      /   4>(o, x, x(a, x))dodx}.
Jo Jo

The method we use to evaluate this conditional integral is to first define a sam-

ple path-valued conditional Yeh-Wiener integral of the type E(F(x)\x(s, •) =

<//(•)) and show that it satisfies a Wiener integral equation. We next obtain

a series solution for E(F(x)\x(s, •) = y/(')) by solving this Wiener integral

equation. Finally, we integrate this series solution appropriately in order to

evaluate E(F(x)\x(s, t) = £,).

1. Introduction

For Q = [0, 5] x [0, T] let C((2) denote Yeh-Wiener space, i.e., the space

of all real-valued continuous functions x(5, t) on Q such that x(0, t) =
x(i, 0) = 0 for every (5, t) in Q. Yeh [8] defined a Gaussian measure my on

CÍQ) (later modified in [9]) such that as a stochastic process {x(5, t), (5, t) £

Q} has mean E[xis, t)] = Jc,Q)xis, t)my (¿/x) = 0 and covariance

£(x(5, i)x(zz, v)\ = min{5, zz}min{i, v}. Let Cw = C[0, T] denote the stan-

dard Wiener space on [0, T] with Wiener measure mw . In [ 10] Yeh intro-

duced the concept of the conditional Wiener integral of F given X, EiF\X),

and for the case Xix) = x(L) obtained some very useful results including a

Kac-Feynman integral equation.

A very important class of functions in quantum mechanics are functions on

C[0, T] of the type

C7(x) = exp < /   dis, x(5)) ds >
V. )

where 6: [0, T] x R^C.
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Yeh's result [ 10] shows that under suitable regularity conditions on 6, the

conditional Wiener integral

(1.1) //(/,¿) = (27r0-1/2expj-^Wexpjy 0(5, x{s))ds\ \x(t) = Ù

satisfies the Kac-Feynman integral equation

//(L<i)-(27tz-)-1/2exp|-|7J

(1.2) + j\2nit-s)Txl2 Jo{s, n)His, n)exV(-^0^-\ dnds

whose solution can be expressed as an infinite series of terms involving Lebesgue

integrals. Then using (1.1), one can use the series solution of (1.2) to evaluate

the conditional Wiener integral

(exp^ /  0(5, xis))ds > |x(f)

The main purpose of this paper is to evaluate the conditional Yeh-Wiener

integral

(1.3) EÍexpíf  f(í>ío, t, x((j, T))dodx\ |x(5, t)=A

in terms of Lebesgue integrals.

One possible approach to this problem would be to find an integral equation

involving the expression (1.3) and then to solve this integral equation. Vari-

ous attempts trying this approach have not been very successful because of the

difficulty involved in solving the resulting integral equation; as an example see

[2, Theorem 2.1] where Chang, Ahn, and Chang derive an integral equation

involving the expression (1.3).

The approach we use in this paper to evaluate (1.3) is to first define a sample

path-valued conditional Yeh-Wiener integral of the type

(1.4) EÍexpl       /  (pío, x, x(¿T, t))¿zWt||x(5, •) = y/i-)) ,

which satisfies a Wiener integral equation similar to that of Cameron and Stor-

vick [1]. The Wiener integral equation is then solved to evaluate (1.4), and

finally by integrating (1.4) appropriately, we evaluate (1.3).

2. Sample path-valued conditional expectation

Throughout this paper we assume that ipit) is a real-valued continuous func-

tion on [0, T] vanishing at the origin; that is to say, \p is in Cw = C[0, T].

For a Yeh-Wiener integrable function F(x), consider the conditional Yeh-

Wiener integral of the type

(2.1) EiFix)\xiS,-) = y/i-)).

Since x(5, •) - is/S)xiS, •) and x(5, •) are stochastically independent pro-

cesses, we have as usual,

(2.2) E(Fix)\x{S, ■) = vi-)) = E ¡Fixi*, ■) - Jx(5, •) + ^(-))5   v   '  '     S

for almost all xp cCu
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Let y(>) be a tied-down Brownian motion, namely,

MO, 0 < t < T} = {w £ Cw : wiT) = {}.

Then, as is well known, y(-) can be expressed in terms of the standard Wiener

process,

y(t)=w{t)-jW{T) + j¿.

Next we establish the following important theorem that will play a key role in

this paper.

Theorem I. If F £ LXÍCÍQ), my), then

(i) Ew{EÍFix)\xíS, •) = VSwi-))} = E[Fix)], and
(ii) Ey,{E{F{x)\x{S, •) = VSiwi-) - jwiT) + #))} = F(F(x)|x(5, T) =

y/SÇ).

Proof, (i) Using (2.2), we may write

Ew{ExiFíx)\xíS,-) = VSwí-))}

—  &11 Fixi*,')-^xiS,.) + -j=wi
)]}•

Let yis, t) = x(5, t) - is/S)xiS, t) + is/VS)wit). Then E[yis, t)] = 0 and
the covariance of y, E[yis, t)yiu, v)] = min{s, u}min{t, v} . Hence, yis, t)

is the Yeh-Wiener process, and so

{f F fx(¡/0-i*vS, •) + -?= ) = /     Fiy)myidy) = F[F(x)].
J       JC(Q)

xit,,.iAiAxiS:T}+m(

s"""' ' ■ vs

(ii) Using Theorem 12 in [7], we may write

(2.3) F(F(x)|x(5, T) = VSÇ) = E

The right-hand side of (2.3) can be written in the form

(2.4) E [F (x(*, •) - ^x(5, .)+-| (xiS, ■) - -x(5, T) + j>/SZ))] ■

Note that x(5, t) - is/S)xiS, t) and x(5, t) - (í/T)x(5, T) are independent

processes and x(5, •) - (>/r)x(5, L) is equivalent to the process

v/5[H/(-) - (•/T)tu(r)] where tu(-) is the standard Wiener process. Therefore

the expression in (2.4) equals

= («,(.)- ^w{T) + ¿Í
*
5" r r

= ̂ |^  F^xi*,-)-^xíS,-) + ̂ ={wí-)--wíT) + Y^  J

= F«, {F (F(x)|x(5, •) = VS (uz(.) - yw(f) + ^i)) } ,

which was to be shown.
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3.  EXAMPLES

Example 1. For x e C(ö), let F(x) = /Qx(5, t)dsdt. Then by (2.2) and the

Fubini Theorem,

F ( j x(5, 0 ds dt\xiS, •) = ipi-U

= F j {x(5, 0 - |*(5, 0 + ¡rW(0} dsdt

= J ^ipit)dsdt = -J   \pit)dt.

Example 2. Let F(x) = JQx2is, t)dsdt. Then by (2.2) and the Fubini Theo-
rem,

I = E[ I x2(5, t)dsdt\xiS, ■) = y/i-

= E j {x(5,0- |x(5,0 + ^(0}   dsdt

j Ex   (x(5,0-^(5,0)2 + |^2(0

+ -£-y/it) (x(5,0-|x(5,o) dsdt.

Using the fact that F[x(zz, v)] = 0 for every iu,v) £ Q and that

F[x(5, t)xiu, v)] = min{5, zz} mini/, v},

we obtain

i=IAst-T+í2v/2{t))dsdt

S2T2     S2T2     S  fT

6     +3 Jo
it)dt

s2t2   s rT

12   + 3 Jo
it)dt.

Furthermore, if we replace ipi-) by VSwi-) and integrate in w over Cw , we

obtain that

c2 T-2        c2

[Jo
w2it)dt

S2T2     S^T^ _ S2T2

1T + TT" ~1~

which agrees with the quantity E[jQx2is, t) dsdt] = E[Fix)].

Example 3. For x £ CÍQ) let F(x) = exp{J x(5, t)dsdt}. Then, due to the
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fact that Jq x(5 , t) ds dt = JJT - 0(5 - s) dxis, t), we obtain

483

J = E (exp i j x(5, t)dsdt\ |x(5, •) = y¿(-)

¡JiT-t)iS-s)d{xis,t)- |x(5,0 + |(^(0)}

j\T-t)dwit)\= exp

xF expjyV-Ofj-*) ¿x(5,o}

where we also used the fact that

-5)¿/(5x(5,0) = C / ÍT- t)dxíS, t) = y J\t- t)dxi¡ÍT-t)ÍS-,
JQ

[s,t).

Thus

(3.1)
53r3l

72   J
J = expl^j ÍT-t)d<pit)\expí-^-\=exp¡-J   y{t)c

Furthermore, if we replace ipi-) by \fS~wi-) and integrate in w over Cw ,

we obtain that

EM)= expj^ll   expi^JTÍT-t)díVSwít))\mwídw)

(-537-3     s3T3] (S3T3)

{-72- + ^4-} = eXP\-i8-/'
= exp

which agrees with the quantity F[exp{/ x(5, 0 ds dt}] = E[Fix)].

On the other hand, if we replace y/(-) by y/S~iwi>) - i-/T)wiT) + (-/T)Ç)
and integrate in w over Cw , using (3.1) we obtain that

< F (exp    / x(5, t)dsdt x(5, •) = ̂ 5 («;(•) - jwiT) + jif) j

= eXP{^72-}^

= exp<

exp

f53r3   53/2rn

i   72

3/2  fr / t t   >
(r-orfíwW-^m+jíí

'53/2 rr/r
/ (t~0 rfu;(i)

¿5373       £3/2 r¿       S3r3>,
= exp| — = exp{-

753F3     S3l2Tc;\

288   +      4     j"
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Also,

F [exp | Í x(5, t)dsdt\ x(5, T) = ^/sA

= EÍexpíííT-t)ÍS-s)dxis, t)} x(5, T) = VsA

= E [exp y ÍT - 0(5 - 5) d (x(s, t) - |^x(5, T) + -^VSÇJ J
'G

Í53^\„exP{^4— )E exp u T-0(5-5)
5F

í/x(5, 0

= exp
S3/2Tç       753r3|

288   J
+

Thus, we have verified directly that (ii) of Theorem 1 holds for the function

F(x) = exp{ Jq x(5 , 0 ds dt} .

4. Evaluation of F(exp{/0 J0Tcpia, x, x(<7, x))dxdo}\xiS, T) = \fS£)

Let (pis, t, u) be a bounded continuous function on Q x R, and let

rT
ö(rj, x((T, •)) = /    <Pi&, x, xicj, x))dx.

Jo

Then

F(5,x) = exp</    /   </>(er, t, x(<7, t))íz"t¿icr >

= exp <   /   ö(ff, x(ff, •))¿/ff >.

Since 9F(5, x)/ds = dis, x(5, '))Fis, x), by integrating over [0,5], 0 < 5 <

5, we obtain

Fis, x) - 1 = /   0(ff, x(ff, -))Fio, x) do.
Jo

Next we take a conditional expectation of both sides and then use the Fubini

Theorem to obtain

(4.1)

F(F(5, x)|x(5, •) = yt(.)) = 1 + / F(0(ff, x(ff, .))F{o, x)|x(5, •) = wi'))do.
Jo

Now for 0 < er < 5 < 5,

(4.2) F(0(ff, x(ff, -))Fio , x)|x(5, •) = </,(•))

= E <9(ff,x(ff, -)--xis, -) + -vi-))

x exp<       9 (u, x(zz, •)-x(ff, )

+ - \xio, ■)- -XÍS, ■)   +-WÍ-) du
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Note that for 0 < u < o, x(zz, •) - (zz/cr)x(ff, •) and xia, •) - io/s)xis, •) are

independent processes, and x(ff,-) - (¿t/5)x(5, •) is equivalent to

\/oil - io/s))wi~) for fixed cr and s. Therefore, it follows from (4.2) that

(4.3) F(0(ff, x(ff, .))F(a, x)|x(5, •) = ,/(•))

= Em J0 (a, yff(l-^)ti;(.) + ^(.))

•)

u

xEx\expl       0 (u, xiu,

--xia, •) +
a a

yff(l-î)u,(.) + ^(.)])rf«}]}

— -£?/

xFx(exp<M   0(w, x(zz, •))<*« M *(ff, •)

-f(i-JH) + îrw)

If we set

(4.4)

= EW [0 (a, yff(l-^)tzj(.) + ^(-))

xFx (f(<t, x)|x(ff, •) = yff(l-^)w(.) + ^(-))

C7(5,  V/(.)) = F(F(5,X)|X(5,-) = V¿(-)),

then substituting (4.3) into equation (4.1), we find that (7(5, y¿(-)) satisfies the

Wiener integral equation

(4.5) G{s, r(-)) = 1 + J^«» [ö (". ^(i-j)^(-) + 7^(0)

xfJ^,^a(l-j)ti;(-) + j^-))   rfff-

This integral equation is very similar to the Cameron-Storvick integral equation

[1, equation (4.3)]. But most importantly it is easy to see that the series solution

to (4.5) is given by

(4.6) C7(5,H')) = £^(s, v(-))>
k=0

where the sequence {Hk} is given inductively by Hois, ipi-)) = 1 and

Hk+Xis, ¥i-)) = J°EW {0 (a, ^<r(l-j)w(.) + y*(-))
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Furthermore, if |0(5, £)| < M on [0, 5] x R then one can easily verify by

induction that

\Hkis,ipi-))\<y—^<y-j^-   fork = 0, 1,2,... ,

hence J2T=o\^kis > Wim))\ < exp{MS} , and so the series Y^L^Hkis, wi')) con-

verges uniformly on [0,5]. Thus, it is immediate that ¿7(5, y¿(-)) given by

(4.6) is a bounded continuous solution of (4.5). To show that it is the only

bounded continuous solution of (4.5), assume that Gx and G2 are each such

solutions of (4.5). Then H = G2 - Gx is a bounded continuous solution of

(4.7) His, ipi-)) = f Ew |e (a, y<x (l - £)«,(•) + ^(-))

xH (a, Ja(l-j)wi.) + ^(-)) } da

= L{His,y/i-))}.

Note that equation (4.7) implies that

(4.8) His,ipi-)) = L"{His,ipi-))}

for n = 1, 2, ... .  Using induction on zz as before with |//(5, <j;)| < N on

[0, 5] x R, it is immediate that

\H(s, vi-))\ = |L"{//(5, wi-))}\ < iNSy/nl

for « = 1,2,.... Thus, we may conclude that //(5, ipi-)) = 0, which estab-

lishes the uniqueness of a bounded continuous solution of (4.5).

It is now easy to evaluate

/   / 4>io,
Jo  Jo

(4.9)        / = F   exp < /     /    (pía ,x, xia ,x))dxda xíS,T) = VSÍ

under the assumption that cf> is bounded and continuous. By Theorem 1, (4.4),

and (4.6) we have that

(4.10)      I = Ew{e (f{S, x)|x(5, .) = VS (w(-) - ^(F) + -c;))}

= Ew[g(s,VS («;(•) - -wiT) + jt))]

CO

= Y,E™ [Hk (S, VS («;(•) - fw(T) + jt))] .
k=0

But now each Wiener integral in the summand can be expressed in terms of

Lebesgue integrals in the usual way as Cameron and Storvick demonstrated in
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