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A SPLITTING THEOREM FOR THE N-R.E. DEGREES

S. BARRY COOPER

(Communicated by Andreas R. Blass)

Abstract. We prove a splitting theorem for the n-r.e. degrees, of which the

Sacks Splitting Theorem [9] for the r.e. (= 1-r.e.) degrees is a special case. For

background terminology and notation see [4] and [11].

Interest in the n-r.e. (and more particularly, d-r.e. = 2-r.e.) degrees stems

from their affinity even for large n with the r.e. degrees, and a number of

recent papers (see for example [1, 2, 4, 6]) have sought to clarify to what extent

there are similarities and differences at the individual levels of the n-r.e. degree

hierarchy. Expectations that the few global properties of the r.e. degrees (in

particular density) might carry over to the n-r.e. degrees, n > 1, have been

only partially fulfilled. Lachlan observed that n-r.e. degrees are not minimal in

the n-r.e. degrees, essentially because they are n-REA (see [7]), but density fails,

even under 0' (see [3]). On the other hand, some of the pathological properties

of the r.e. degrees disappear in the wider context, such as in Downey's diamond

theorem [5] for the d-r.e. degrees and Arslanov's use [1] (and more generally in

[4]), of d-r.e. degrees for cupping. Therefore the theorem below is welcome in

the sense that we now have a global splitting property at every level of the n-r.e.

hierarchy of degrees. (We note that the splitting of the n-r.e. degrees in the A2

degrees is an immediate consequence of the n-REA property and the relativised

Sacks Splitting Theorem.) Further information relating to the structure of the

n-r.e. degrees may be found in [8].

Theorem. Let d be n-r.e. Then there exist n-r.e. degrees a, b such that a|b and

aub = d.

In order to prove the theorem, we give a construction for the case d prop-

erly d-r.e. and then indicate how our construction can be adapted to give the

inductive step in the proof of the theorem for all « > 1 . The case zz = 1 is

just the Sacks Splitting Theorem, of course.

Let D G d be d-r.e. We construct d-r.e. sets A, B, and partial recursive

(p.r.) functionals T, A, and Q, satisfying the overall requirements

A = YD,        B = AD,        D = QAB
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and the prioritised list of requirements

R2i: D = Q>f=>i3I2ir.e.)       I2l=TD,

R2i+X : D = Of =* (3/2¡+1 r.e.)       I2M =t D,

i > 0, where {O,},>o is a standard listing of the p.r. functionals. The overall

requirements will ensure that A , B <t D and D <r A, B, so D =t A® B .

We use the convention that if O, say, is a p.r. functional then small 0 denotes

its standard use function.

Our strategy is initially the Sacks Splitting strategy with a few modifications.

The main new feature is in the way the Ä-requirements are set up and satisfied.

The splitting strategy is almost as one would expect. As numbers are enu-

merated into D traces for these numbers permit x c D by being enumerated

into A or B, but not both (a trace for x being a number whose presence in A

or B indicates that x e D). We cannot just use the number itself as the trace

though, as we may need to change our mind about whether it is to be in A or

B more than once, and A , B must be d-r.e. If such a number is subsequently

extracted from D, its current trace must also be extracted from Au B . As in

the Sacks construction, we do have freedom of choice when x \ D (that is, x

enters D) as to whether to change A \ coix) or B \ coix) in enumerating the

current trace for x into A U B, and we exercise this choice in the interests of

avoiding injuring requirements of relatively higher priority.

There is no choice, however, when it comes to extracting the trace of x from

Ali B. Injury to the R2i or R2¡+x requirements is usually immediate and un-

avoidable. But the discretion exercised in enumerating into A and B together

with the usual Sacks restraints over /(D, (¡>f), /(D, <E>f) (that is, the standard

lengths of agreement at the appropriate stage of the construction) provide us
with (in Soare's terminology [11, p. 112]) an injury set for a particular require-

ment that is r.e. instead of d-r.e. This results in D / <S>f (and D # Of ) since

otherwise we would have D =t a r.e. I2¡ (or /2H-1) contradicting the properly

d-r.e.-ness of d.
The main source of complication in this simple outline is that there is a new

infinite outcome in which D ^ <$>f, say, through 0<*(x) î (that is, 0<*(x)

is undefined) for some x, where /(/), <pf) is unbounded, perhaps. This is

because, in contrast to the Sacks splitting theorem where the prioritisation gives

us a finite (that is, 0-r.e.) injury set for a 1-r.e. splitting, here the reduction is

of a 2-r.e. splitting to a 1-r.e. (that is, r.e.) injury set.

The reason why we can still operate our strategy is that the ,4-use of /(/), O/)

must have bounded lim inf. But this fact will only emerge over a period, and

since there may be a number of such lim inf s to consider in deciding which of A

or B is to permit x \ D, there will be a number of false permissions decided

upon and then extracted. Eventually of course, in the usual way, we identify

the true path relative to x \ D and make the correct choice of A \ coix) or

B \ coix) change. So the Sacks strategy is still intact, but now buried in a tree

of strategies.
In the construction below, we assume that for each x we have available a

fixed, previously chosen, finite set of A- and 5-traces for x . We will only have

regard for the first x requirements in deciding whether to record x \ D in

A or B. This will still mean that Rx will be given due regard in deciding

whether to use A- or 5-traces for y > x, which is enough.  But it will also
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mean that if we take care in describing those initial segments of agreement

/(Z), Of) or /(/), Of), which we protect at later stages of the construction (see

the definition of fixations for A and B below), then we can ensure that we need

at most (x + 1)! A and B traces available for recording x \ D in AU B.

This determines the size of the finite sets of A- and ß-traces for x, x > 0,

allowing us to keep all such traces < coix) at all stages of the construction. (For

convenience, we also choose each trace for x to be > x.)

Of course, each time we change our mind about the current trace y for x

(whether to choose an A- or 5-trace usually) this will usually mean we need

a D f yiy) or D \ A(y) change to permit this via Y or A. We will see in

the construction and proof below that we will only want to switch trace for

x when certain /»-changes change the relationship of x to one or more of

the requirements, and the definitions of yiy), A(y) will be tailored to take

advantage of these changes.
It will be useful to relate our construction to a tree of outcomes. We first

define the following auxiliary functions (using the convention that X \ z =

X(0)X(1) • • • Xiz - 1) for each set X Ceo, each z > 0)

Is\D, Of) = pz[Q>f (z) ¿ Diz) at stage s],

zzz(L>,Of)= max{l'íD,<í>f)\t<s},

usi<Pf, x) = pw[&fN+1 \ x I at stage s],

z/(Of ) = z/(Of ,/5(/),Of)).

We say x is a t-fix if and only if x c D' - D'~x .
We say y is a t-fix trace (at stage s+l) if and only if y is the current trace

of some i-fix.

At stage 5 + 1 of the construction, as well as defining A and B, we will

define finite sets, called t-fixations for A and B, written (L4i+1) and {tBs+x)

(or just it A) and (tB) when we are just referring to their current values), where
itAs+x) and itBs+x) will consist of As+X and Bs+X , respectively, minus those

i'-fix traces, t' > t that have been allocated to A or B, respectively, at stage

5 + 1. The definition of /-fixations is motivated by the need to update our

actions in assigning Z-fix traces to A or B in the light of the changing state

of the restraints needed to satisfy the ^-requirements. This updating (see the

definition of trace location exercise in stage s + 1 of the construction below)
must be inductive, as how we deal with a i-fix trace may change our assessment

of which restraints to retain at stage s = 1, and hence how to assign at stage
5 + 1 a ¿"'-fix trace for some t' > t. So the finite sets itAs+x) and itBs+x) are

used to record the steps in this inductive definition of As+X and Bs+X .

We also need some terminology to describe whether a use zz'(Of , z) observed

at a stage t is still a candidate for being restrained at a later stage 5 + 1. We

say zz'(Of, z) is valid (at stage s+l) if and only if A' \ zz'(Of , z) c (tAs+x)

(set inclusion here), and define

&'>'+\<l>t) = max{«'(Of , z)\z < l\D, Of)

& zz'(Of , z) is valid at stage s + 1},

%?s+xicpf) = max{%''s+xi®f)\t < s + 1}.

There are similar definitions with B in place of A .
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Then for each R2i and each n > 0, " n " is the outcome

"liminf^iOf^zz, "
and for each R2i+X it is

"liminfs^(Of) = zz."

The branching at a general vertex of the tree of outcomes looks like

0       1        2   • • • n   • • •

We will use standard terminology (cf. [11]) in regard to the leftmost path and

the true path (the leftmost path consisting of leftmost vertices visited infinitely

often during the construction, the true path of vertices describing the actual

outcome of the construction).

We assume below that for each s > 0, Ds+ ' and Ds differ on exactly one

number.

1. The construction

Stage 0. Define A0 = B° = 0 .

Stage s + 1. Case 1. 3x e TP+X - Ds.

We set in motion a trace location exercise for this x and say that x has

entry stage s + 1 . We suspend the trace location exercise for each x' e Ds+X

for which x' > x. (This means that at subsequent stages t + 1 we allow the

trace location exercise for x to decide, in the interest of the J\-requirements,

the optimal placement of all current traces for such numbers x', so long as

x e D'+x and the trace location exercise for x is not itself suspended at stage

t + 1 . This procedure is necessary to avoid such numbers x' leading to the

number of trace changes for x becoming unbounded.)

We say a finite string of numbers o is valid (intuitively, to the left of the

true path) at stage s + 1 if and only if for each y < //z(cr)

J %fs+x (Of)    if y = 2/,  some i > 0,

ffW - \ ^+i(Of )    ify = 2i+l,  some i > 0.

We write ox+x for the largest string of length x that is valid at stage s + 1

(where we order the strings lexicographically upwards).

Intuitively, osx+x denotes a current guess at the true path. Each true outcome

for requirements Ry, y < lhiox+x), appears infinitely often as ¿r£+1(y), but

because these appearances for distinct requirements are not necessarily in phase

we actually need a less instantaneous assessment of the true path at stage s+l.

We say p is x'-grounded at stage 5 + 1 if and only if Ihip) = x', x' has

entry stage e + 1 < 5 + 1, and for each y < Ihip) we have

r^+l(Of)    ify = 2/,

P(y>       \ ^,s+l(<pf)     ify = 2/+l.

(So if p is x'-grounded then p is valid at stage s + 1.)

We write psx1~x for the unique x'-grounded string at stage 5 + 1 , each x' €
Ds+X .
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At each stage t + I > s + I, if x c D'+x some t' < t, the trace location at

stage t + 1 consists of finding the least y (if it exists) such that x < p'x+xiy)

and ensuring that for this y we locate the trace for x in A or B (but not

both) in such a way that

y = 2z     some i =>• only the current trace for x is in (5 + lAt+x) u (5 + lBt+x),

and this is in is + IB'+X) - is + lAt+x),

and

y = 2/ + 1     some i => the same with A and B interchanged.

(If y does not exist, the trace location exercise for x at stage t+ 1 just consists

of locating the x-trace in A , that is, we put the current x-trace in {s+ lAt+x).)

Intuitively again, this is where we apply a local (to stage s + I) version of

the Sacks splitting strategy. That is, we check the highest priority requirement

likely to be injured by the enumeration of x into As+X U Bs+X and protect the

restraint associated with this requirement by enumerating the current trace for

x (using the fact that x is < all its traces) into the appropriate set As+X or
Bs+X.

If this involves a change of x-trace, we extract the existing x-trace from

is + lAt+x) ö is + IB'+X) and choose a new current x-trace (which may be

chosen to be any as yet unused member of the set of potential traces for x)

and enumerate this into the appropriate set i{s + IA) or (5 + IB)).

However, if the trace location exercise for x is suspended, if we extract an

existing x-trace we do not choose a new current x-trace via the trace location

exercise for x, but choose a new x-trace in A or B according as there is an
x'-trace in A or B where x' is the unique number c Dt+X through which

the trace location for x was suspended, but whose own trace location is not

suspended. We continue the situation where the x-trace is in the same set ÍA or

B) as the described x'-trace until all suspensions of the trace location exercise

for x have been cancelled.

At stage 5 + 1 we carry out the trace location exercise for each x' e Ds' ,

some 5' < s, in ascending order of entry stage. This will ensure that psx+x is

available at stage s + 1 by the time the trace location for x is due to be carried

out. Following the trace location exercise at stage 5 + 1, we define for each

t <s+ 1

itAs+x) = the set of all those t'-ñx traces located in A during

the trace location exercise at stage 5 + 1, for some t' < t,

As+X = is+lAs+x)=   (J  (t'As+x).

t'<s+l

Case II. 3x c Ds- Ds+X.
We extract from Al) B any x-trace in A U B at stage 5 .

We also cancel any suspensions of trace location exercise for numbers x' c

Ds+X imposed at the entry stage of x through Case I. We continue at the next

stage the trace location of any x' that has had all its suspensions cancelled by

the end of stage s + I.

2. New axioms for Q, T, and A at stage 5 + 1

The definition of axioms for Í2 is straightforward. As previously described,

we ensure that we choose ¿y(x) (as the least number) > all x-traces at each
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stage and make sure that we define ClA'Bix) = D(x) at each stage 5 + 1 > x .

For T and A, for each y > 0 we define rD(y) = A{y), AD(y) = 5(y) for
each stage s + 1 > y.

If y is an x-trace for use with A (say), we ask that if x ^ LzWs+i ̂  tnen

YÍy) > x. If x c Ds+X, we define ys+xiy) so that

ys+xiy) = max {pxtxiz)\x' c Ds+X,  z < lh(p&1);

& x' has entry stage < that of x}.

(The description, including the definition of Xs+X (y), is similar for y an x-trace

for use with B .)

The above definitions of ys+1(y) and Xs+Xiy) are motivated by the need to

ensure that whenever we need to relocate an x-trace (from A to B say), then

the existing x-trace maximizes each of the numbers whose extraction from D

is likely to result in a variation of the trace location exercise for x at stage

5+1.

This ends the description of stage s + 1 of the construction.

Then A , B are defined by

Aix) = LimsAsíx),        Bíx) = LimsAsíx),

each x > 0.
We first check that the construction is well defined. This follows from

Lemma 1. Each number x requires at most (x + 1)! traces during the construc-

tion.

Proof. We first notice that an x-trace change at stage s+ 1 is due to px+xíz) ^

psxiz)  for some  z < x.   Let  z*  be the least such  z, and (without loss of

generality) assume z* = 2z, for some i > 0.

So (assuming x has entry stage e + 1) we have

psxiz*) = W>\<bf) = z/(Of , w),

say, where zze(Of , w) is valid at stage s + 1, and either

(i) there is some uei<$>f,w') > uei&f,w),  w' < /'(/), Of), which is

valid at stage 5 4- 1 but not at stage 5, or

(ii) zze(Of, w) is no longer valid at stage s + 1.

If (i) holds we have

Ae \ z/(Of , w') c ieAs+x),    but £ {eAs).

This means that for some f-fix trace y for some (minimal) x' with t < e,

either
y e ÍAe \ ¿/(Of , w') - ieAs)) n ieAs+x)

or
y € (eAs) \ z/(Of , w') - ÍAe U ieAs+x)).

Then either y is relocated at stage s + I  or x' c Ds - Ds+X . In either case,

since x' < y, we have x' < ue (Of ).

Also, by the construction, in the former case we have t < e , so that we must

have x' < x, since otherwise the minimality of x' makes it impossible for the

trace location exercise for x' to have been suspended at stage e + 1 .
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If (ii) holds, we have

Ae \ z/(Of, w) c {eA'),    but gL (eAs+x).

So for some /-fix trace y for x' say, t < e , either

yciAe fz/(Of ,w)r\ieAs+x)-ieAs+x)

or
y G ieAs+x) \ueí<Pf,w)- ÍAe u ieAs)).

Again, either y is relocated at stage s+1 (which will now include the possibility

that the trace location exercise for x' was suspended at stage e + 1, so that we

merely extract y from As+X and do not choose independently of other trace

locations a new x' trace at stage s + l) or x' e Ds-Ds+X . Again, since x' < y,

we have x' < zze(Of ). And in the former case, we get x' < x unless the trace

location exercise for x' is suspended at stage e + 1, in which case we have

y c Ae \ zze(Of , w) - ieAs') at every stage s' > s + 1.

We now obtain from the above that the x-trace change at stage s + 1 orig-

inates with either a trace location for some x' < x or with some number v

being permanently extracted from A where v < zzi'(Of , w) = psxiz*). Also, in

the latter case we must have

pxiz*)>x>px+xiz*),

giving x > psx'(z*) for all s' > s + 1 at which x c Ds' . But this means the

number of x-trace relocations is less than or equal to x + ^2X,<X (the number

of x'-trace relocations), from which the lemma follows.   D

Lemma 2.  Í2, T, and A are consistent p. r. functionals, and

A = TD,        B = AD,        D = ÇlAB,

where A, B, are d-r.e. sets.

Proof. By the construction, we define £lA'Bix) = Z>(x) at each stage 5+1 > x ,

each x > 0, with (¿z(x) = the maximum of the x-traces. Since there is an x-

trace in AliB if and only if x e D, at each such stage, Q. satisfies the lemma.

Again, by the construction, we define A{y) = TD(y), /?(y) = AD(y) at each

stage s + 1 > y for each y > 0. Also, it is easily verified that y(y) is bounded

with 5 + 1 . Let 5 + 1 > y be the least stage at which we inconsistently define

Aiy) = T°(y) (some y > 0). So y must be a trace for some x, say, and we

have a stage t + 1 < 5 + 1 such that we define

Aiy) - r°(y) = St+\,        Aiy) = r°(y) = ôs+x ,

say, at stages t+l, 5+1 where ôs+x = l-ö!+x and D \ y'+xiy), D \ ys+1(y) are

comparable. This means there is some (least) stage s'+'l, 5+1 >5'+l >' r+'l,

at which the trace location for x at stage 5' + 1 either results in (a) y being

selected as a first x-trace c A U B, (b) in an x-trace change at stage s' + 1 , or

(c) x being extracted from D at stage 5' + 1 . We also notice that in (a) or (b)

we have
ycAs'+x ^ycA''+x-A'+x

for each t' + 1, s+l>t'+l>s'+l.
If (a) occurs, x c £>i+1 - Dt+X . But y'+xiy)ys+xiy) > x, giving

D \ yt+xiy)\D f ys+1(y), a contradiction.
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Similarly, if (c) occurs, x e Dt+X at each stage t' + 1 < s' + 1 at which

y c A''+x , and at every stage we have x < y(y). Hence Z)'+1(x) ^¿ Ds+Xix),

again contradicting the comparability of D'+x \ y'+1(y) and Ds+X \ ys+xiy).

On the other hand, (b) implies that the x-use string px+x changes at stage

5 + 1. In particular, we have /?j'+1(z) ^ psx\z), some (least) z < x .

Now, arguing as in Lemma 1, we have that either there is some trace reloca-

tion for some e' + 1-fix x' < x at stage s' + 1, with e' + 1 < e + 1, or there

is some number v permanently extracted from Au B where v < pxiz) and

v is a trace for some x' e De+X , x' < x. Hence we inductively obtain that

there is some x"-trace v permanently extracted from A U B at stage s' + 1

where v < /zL(z), for some x', where x' e De+X, x" < v , and x" has entry

stage < that for x'. We can also assume that the inductive process ends up

with this permanent extraction not being due to trace relocation, but due to x"

being extracted from Ds+X at stage s' + 1 . But by the definition of y''+xiy),

y''+iiy) > Px*liz) > f°r each stage /' + 1 > e + 1 at which x' c D''+x, we again

find that the assumed inconsistency in T is impossible (using the minimality

of 5' + 1). This completes the proof of Lemma 2.   D

We now define injury sets (compare [11, p. 123])

I2i = {x\3s, t, z[A'íx)¿Aíx)&x < tz'(Of , z) < ¿J2J,+1(2z)]},

I2i+X = {x\3s, t, z[B\x) ¿ Bix)&x < zz'(Of , z) < <r|;++11(2z + 1)]} ,

for each i > 0. Let

sein) <& In is r.e.,

^■(zz) <=> Rn is satisfied,

Win) ^ Liaix Lims psx f (zz + 1) exists = pn (say).

We inductively verify j/(zz), ¿$in), and Win) for all n .

Lemma 3.  (Vzn < zz)   Wim) => j/(zz) .

Proof. Let zz = 2/ (the case zz = 2/ + 1 is similar).

By (Vzzz < n) Wim) choose a stage t+ 1 such that psx+xiz) > p„iz) for all

5 + 1 > t + 1, all x with entry stage e + 1 < 5 + 1, all z < n . Choose r greater

than zz and greater than all such /z„(z). Choose r* > r such that r* is greater

than every x-trace with x < r. Choose v + 1 > t + 1  such that

D\r = Dv'+x\r   and    ÍA U B) \ r* = ÍAV'+X U Bv'+X) \ r*

for each v' + 1 > v + 1.
We show that /„ n A is finite, since y cInC\A=ï y c Av+X . Let y c I„(~\A.

This means we can choose s, t, z such that

y c ÍAS+X n A) - A' & y < zz'(Of, z) < osn+x in),

and y is an x-trace for some e + 1 -fix x with e + 1 < 5 + 1 and x c D. Then

at each stage 5' + 1 > 5 + 1 we do not relocate the trace for x at stage s' + 1.

The reason for this can be either

(i) the least z such that x < px+xiz) is the same least z such that x <

psx\z),or
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(ii) the trace location exercise for x is suspended at stage s' + 1 through

some e'+l-ñx x' (whose trace location is not suspended), e'+l > e+l,

x' < x, and we do not relocate the trace for x' at stage s' + 1.

If (i) holds at each large enough such stage s' + 1, we must have z < n and

x < Limx Lim5 psxiz) = p„iz) < r. But then by choice of r, r*, and v + 1 we

have s = I <v + I.

If (ii) holds at infinitely many such stages s' + 1, at each such stage there

is some such x' and hence (since there are only finitely many such x') such

an x' s D, so that trace location for x is permanently suspended. Hence in

this case (i) now applied to x' at all large enough stages. But this means that

x-trace location was suspended at a stage < v + I, and in each case it follows
that y cI„r\A=>y c Av+X.

sfin) immediately follows from the finiteness of InnA. This is because if

x 6 /„ = I2i, say, then either x c A - A', for some t, or x c A' - A , for some

t. So we have x c I„ if and only if either x c InC\A or

3s,t,t', z[x G yl'-/i'&x < zz'(Of, z) <osn+xi2i),

and hence /„ is r.e. as required.   D

Lemma 4. j/(zz) => ̂ (zz).

Proof. Take n = 2i again. As in Lemma 3, let v + 1 be such that y c In C\A =>

y € Av+X (that is, R„ is never injured after stage v +1, except by the extraction

of traces).

Assume that D = Of , so that Lims IsÍD, Of ) = oo . We show that I„ =T D.
To show /„<rfl,we first use the fact that A <T D via T, by Lemma 2.

We can compute /„ from D as follows:

To complete I nip), we first find the largest stage t' at which we have

TDip) T    or   TDip) I    with D1' r f'ip) £ D.

From this we find all stages t for which A'ip) ^ Aip). For each such stage t

we check with the help of A, T, and D whether there is ever a stage 5 + 1

such that
&t-s+liQf) = uti<t>A, z),

with p < zz'(Of , z), and then whether we ever have

^+1(<pf) = g/'.s+1(<Df).

We then decide whether p c /„ using the definitions of /„ and os„+xin).

To show D <T I„ we use D = Of to give an algorithm for computing Dip)
from /„ :

Look for a stage t > v + I such that

p+i </'(£>, of)&a;;+1(zz) i >z/(of ,p + i)

where

Mw < zz'(Of , p + l)[w cA'^-w i /„].

Set D(j>) = Of ipi[t].
We verify (a) for each p > 0 such a stage t exists, and (b) given such a t,

Dip) = <t>fip)[t].
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For (a), let t' be a stage > v + 1 such that

A1' rz/(Of ,p+ 1) cAs'    and   p + 1 < /*'(/), Of )

for ail 5' > ¿" , and take t = ¿" . Then

As' [z/(Of,/?+ l)c (M*'+I)

for ail s' > t', which means m'(Of , p + 1) is valid at each stage s' + 1 > í + 1.

Hence

cTSn'+1(n) I > %s'+\<&i) > ^''s'+1(Of ) > w'(Of , p + 1)

for each s' + 1 > / + 1 . Also, by the choice of / we have for each w <
zz'(0*, p+ 1) that if zí; e A' then -ízj g v4 , and hence (since t+l > v + l)) w £

/„ . So (a) is proved.

For (b), we inductively verify that for infinitely many stages s' + I > t

p+l </s'(/),Of)&rj„î,+1(zz)I >zz'(Of ,/z+l) = z/(Of ,p + l).

Dip) = Of ip)[t] will then follow from D = Of .
In order to get a contradiction, assume that there is a largest such stage

s' + 1 = 5* + 1, say. This means that at every stage s' + 1 > s* + 1 we have

zz'(Of , z)#z/(Of , z)

for some z < p + I, and without loss of generality, we can assume in this case

that at every stage 5' + 1 > 5* + 1 we have

u'i^A,p+l)^us'i^A,p+l).

This means that at each such stage 5' + 1 there is some x-trace y <

zz'(Of),/z + 1), for some x > 0, for which A'iy) ^ As'iy). So there is

some such y < w'(Of, p + 1) for which ^l'(y) ^ Aiy). But by the defini-
tion of /„ this means y c I„ . And by the choice of v + 1 and / we have

y < tz'(Of , p + 1) => y t¿ /„ , which is the required contradiction.   D

Lemma 5.  [i^m < n)  <gim))8L9B{n)\ ̂  Win).

Proof. Assume Rn is satisfied, n = 2i again, and that LimxLimspsxíz) exists

for each z < n . We need to show that Limx Lim^ pxin) exists.

If D ^ Of then liminfs zzs(Of ) exists = zz(Of ), say. We show that

Lim* Lim* psxín) = zz(Of ).

By definition, if 5 > e ,

pxin) = %Se's+xi<frA)

= max{z/(Of , z)|z </*(/), Of )&z/(Of , z)

is valid at stage s + 1}.

Let v + 1 be as in Lemma 3. Then if e > v + 1, and if y < zze(Of, z) and

z/(Of z) is valid at a stage s + I > e but y e {eAs+x) - Ae, then y £ A .

Hence if z < leÍD, Of ) and zzf(Of , z) is valid at infinitely large stages 5 + 1

we have Ae \ zze(Of , z) c A . It follows that
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LimJ^(zz) = max{«<'(Of , z)\z < IeÍD, ®f)&Ae [ z/(Of , z) c A}

from which Lemma 5 follows.   D

We now get j/(zz) , á?(zz), and Win) inductively for all n .

Now say we have the theorem for some zz > 2, and d is an (zz + l)-r.e.

degree. Then either d is n-r.e., in which case it can be split, or d is properly

(zz + l)-r.e. (that is, (zz + l)-r.e. but not n-r.e.). In this case we can carry out

the above construction but with D ( (» + l)-r.e., deriving injury sets that are

n-.r.e instead of just r.e. and adjusting the use of the traces to n instead of 1.

This completes the proof of the theorem.

As an application of the above, one might follow Arslanov's idea [ 1 ] of using

splitting to prove density of certain subclasses of the n-r.e. degrees (Sacks'

original approach to proving the density of the r.e. degrees, it seems), perhaps
extending the techniques of [ 10] where it is shown that relative splitting is always

possible within the low 2 degrees.
Completely untouched by any existing result remains

Downey's Conjecture [5]. The theories of the n-r.e. degrees for each n > 2 are

elementary equivalent.

The above theorem, like previous work, presents a situation in which the r.e.

case is the special one (the injury set is finite), and the n-r.e. case, n > 2,

follows from the d-r.e. one.

REFERENCES

1. M. M. Arslanov, Structural properties of the degrees below 0' , Dokl. Akad. Nauk. SSSR

283(1985), 270-273.

2. N. R. Bukaraev, On T-degrees of differences of recursively enumerable sets, Izv. Vyssh.

Uchebn. Zaved. Mat. 228 (1981), 40-49 (Russian); English transi.: Sov. Math. (IzVUZ) 25

(1981), 40-52.
3. S. B. Cooper, L. Harrington, A. H. Lachlan, S. Lempp, and R. I. Soare, The d-r.e. degrees

are not dense, to appear in Annals of Pure and Applied Logic.

4. S. B. Cooper, S. Lempp, and P. Watson, Weak density and cupping in the d-r.e. degrees,

Israel J. Math. 67 (1989), 137-152.

5. R. G. Downey, D-r.e. degrees and the nondiamond theorem, Bull. London Math. Soc. 21

(1989), 43-50.
6. Sh. T. Ishmuchametov, On differences of recursively enumerable sets, Izv. Vyssh. Uchebn.

Zaved. Mat. 279 (1985), 3-12. (Russian)

7. C. G Jockusch, Jr. and R. A. Shore, Pseudo jump operators I: The R. E. case, Trans. Amer.

Math. Soc. 275 (1983), 599-609.

8. P. Odifreddi, Classical recursion theory, North-Holland, Amsterdam, New York, Tokyo and

Oxford, 1989.

9. G. E. Sacks, On the degrees less than 0', Ann. of Math. (2) 77 (1963), 211-231.

10. R. A. Shore and T. A. Slaman, Working below a low 2  recursively enumerable degree (to

appear).

11. R. I. Soare, Recursively enumerable sets and degrees, Springer-Verlag, Berlin, New York,

and London, 1987.

School of Mathematics, University of Leeds, Leeds LS2 9JT, England

E-mail address: PMT6SBC@UK.AC.LEEDS.CMS1


