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COMMON FIXED POINTS FOR COMPATIBLE MAPS
ON THE UNIT INTERVAL

GERALD JUNGCK

(Communicated by James E. West)

Abstract. Let g be a continuous self-map of the unit interval / . It is proved

that g has a common fixed point with every continuous function f:I—*l

that is nontrivially compatible with g iff every periodic point of g is a fixed

point of g.

1. Introduction

In 1954 Eldon Dyer asked whether two continuous self-maps / and g of the

unit interval that commute if g = gf ) have a common fixed point. Although

counterexamples to the conjecture were constructed independently in 1967 by

Boyce [1,2] and Huneke [6, 7] variants of Dyer's question continue to generate

activity [3, 4, 12, 13]. One by-product of this activity is the utilization of the

commuting map concept as a means of generalization in more abstract settings

such as metric spaces. (See [10] for a partial bibliography.)
The desire for more comprehensive results in the context of metric space

fixed point theory led to generalizations of the commuting mapping concept per

se. One such generalization is the concept of compatible mappings introduced

in [10]. As noted in [11], continuous self-maps / and g of a compact metric

space X are compatible iff they commute on the set {x £ S : fix) = g(x)}

of coincidence points of / and g . In this note we return to the unit interval

/ = [0, 1 ]. We prove that a continuous self-map g of I has a common fixed

point with every continuous map /:/—>/ that is nontrivially compatible with
g iff every periodic point of g is a fixed point of g.

2. Notation and terminology

The term map will denote a continuous function. As noted above, maps

f,g:I-*I are compatible iff fgix) = g fix) for all x in A = {x £ I :
fix) = g(x)}. If / and g are compatible and A jt 0, we shall say that /

and g are nontrivially compatible. So, e.g., if fix) = 0 and gix) = 1 for
x £ I, then / and g are trivially compatible maps, but / and /z(x) = x

are nontrivially compatible on /. It is easy to show that if f,g:l—yl are
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compatible maps such that /(/) ç gil), then A jt 0 and / and g therefore

are nontrivially compatible.
Moreover, suppose that g: I —> I is a map. x £ I is a periodic point of

g iff gkix) = x for some k £ N, the set of positive integers. Pg (Fy) will

denote the set of periodic (fixed) points of g, and Kg is the set of all maps

/:/—»/ such that / and g are nontrivially compatible.

3. Results

The following lemma was stated and proved in [9] for commuting maps;

however, the only facts in the proof that required the commutativity of / and

g were that the set A of coincidence points of / and g be nonempty and

that fix), gix) £ A whenever x £ A. These facts are obtained if / and g

are nontrivially compatible. We can therefore say

Lemma 3.1 [9]. Let f, g: I -* I be nontrivially compatible maps. If f and g
have no common fixed points, there exist a, b £ I such that

ia) fia) = gia)>b>a>fib) = gib),
(b) fix)¿gíx) for x£ia,b).

In the following we shall denote the Intermediate Value Theorem by IVT.

Lemma 3.2. If g: I —► / is a map and (i) g2ix) = x implies gix) = x, then

there exist no a, b £ I such that

(*) ¿?(fl) > b > a > gib).

Proof. Suppose there exist a, b£l for which (*) holds. Since g is continu-

ous, g has a minimum fixed point d £ ia, b). Thus (ii) gix) > x on [a, d)

and g id) = d. Now gia) > b > d = g(d), so that the IVT applied to g on
[a, d] yields z in [a, d) such that giz) = b . Consequently, by (*),

(1) g2iz) = gib)<a<z.

Keeping in mind that (i) actually assures us that gix) = x iff g2(x) = x,

we conclude that g2(x) ^ x for x £ [a, d) by (i) and (ii); consequently, (1)

implies that g2(x) < x on [a, d) since g is continuous. But £2(0) > 0, so

there is a largest r £ [0, a) such that g2ir) = r. The choice of r and the

continuity of g thus imply

(2) g2ix)<x   on ir,d).

But g2ir) = r so that g(r) = r < a < b < gia). Apply the IVT to g on

[r, ¿2] to obtain t £ (r, a) ç (r, d) such that git) = a, and hence, g2it) =

gia) > b > t. This last inequality is a contradiction of (2).   D

Lemmas 3.1 and 3.2 combine to give us

Corollary 3.3. If g: I —► / is a map such that g2(x) = x implies gix) = x,

then g has a common fixed point with each function f £ Kg .

We need the following consequence of Sarkovskii's Theorem. See, e.g., [5, p.

62].

Theorem 3.4. Let g: I -> / be a map, and let Pk = {x £ I : gkix) = x}. //

P2QPX, then Pk = Px for all k £ N.

The preceding result enables us to prove
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Theorem 3.5. If a map g: I —> / has a common fixed point with every f £ Kg,

then Pg = Fg .

Proof. Since in the notation of Theorem 3.4, Pg = \J{Pk : k £ N} and Fg =
Px, Theorem 3.4 asserts that we can prove that Pg = Fg by showing that

Pi-Pi- To this end we suppose there exists a £ P2-Px. Then g2ia) = a and

gia) ^ a. We assume, without loss of generality, that gia) > a and construct

a function f £ Kg , which produces the desired contradiction.

Consider the interval [a, gia)]. Because of the continuity of g, we can

let c be the maximum element of [a, gia)] such that gic) = gia) Since

gÍ8Ía)) = a < gia), it follows that c < gia). But gigia)) = a, so we can

choose a minimum d £ (c, gia)] such that g(¿¿) = a. Thus ¿z < gix) < gia)
on (c, d).

Define /":/—►/ as follows:

fix) = gia)   if 0 < x < c (in particular, fía) = gia)) ;

( max{gic + h) - h, a} if 0 < h < id - c)/2,

n°+   '~\max{gic + h)-iid-c)-h),a}   if (rf - c)/2 < h < d - c;

fix) = a   ifd<x<l, (thus, figia)) = a).

Now / is continuous since g is. Moreover, / has no fixed points on

[0, c] U [d, 1]. So the fixed points of / lie on (c, d). But fix) / gix) on
(c, d) by construction. Thus, / and g have no common fixed points. To see

that / is indeed a counterexample, we have yet to show that / and g are

nontrivially compatible. Since fía) = gia), we need only verify that / and
g commute on their points of coincidence. Now suppose that /(x) = g(x) ;

then x £ [0, c] or x £[d, 1]. If x £ [0, c] then fix) = gix) = gia) = fía),
so g fix) = g2ia) = a and fgix) = fg\a) = a; i.e., g fix) = fgix). If
x £ [d, 1] then fix) = gix) = a,so g fix) = gia) and fgix) = fía) = gia) ;

i.e., fgix) = g fix). In any event, /(x) = g(x) implies fgix) = g fix), as
desired.   D

Corollary 3.3 and Theorem 3.5 combine to give us the following necessary

and sufficient criterion.

Theorem 3.6. A map g: I —» / has a common fixed point with every function

f£KgiffPg = Fg.

Corollary 3.7. Suppose that g: I —» / is continuous on I and differentiable on

(0, 1). If g'ix) / -1 for x £ (0, 1), then Pg = Fg and g has a common
fixed point with every f £ Kg

Proof. Suppose that x e / and that gix) ^ x. By the MVT, there is a point c

between x and gix) suchthat gígíx))-gíx) = g'íc)ígíx)-x). If g2íx) = x

we have x - gix) = g'(c)(g(x) - x), or g'ic) = -1, a contradiction. Thus

g2(x) = x implies that g(x) = x, so that Corollary 3.3 and Theorem 3.6 yield

the conclusion.   D

It is natural to ask whether at least one fixed point of g assured in Corollary

3.7 must serve as the common fixed point for g and the entire family Kg . The

following example shows that such a point need not exist.

Example 3.8. Let f,g,h:I—>I be defined by fix) = 1, g(x) = x2, and
/z(x) = 0 for x £ I. It is immediate that g satisfies the hypothesis of Corollary
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3.7 and that /, h £ Kg , but the only common fixed point of /(/z) and g is

1(0). (Note that f and h are trivially compatible.)

4. Retrospect

Consider the functions f, g, h: I —> I defined below.

Example 4.1. Let fix) = (4x on [0, 1/4] and I on [1/4, 1]), gix) = (i on
[0, 1/4], (9-4x)/8 on [1/4, 3/4], and x on [3/4, 1]), and let A(x) = (x

on [0, 3/4] and 3/4 on [3/4, 1]).

As opposed to Example 3.8, each of the pairs {/, g} , {g, h} , and {/, h}

of Example 4.1 is a nontrivially compatible pair (and we say that the family

{f>g,h} is nontrivially compatible). For example, gix) = /z(x) implies that

x = 3/4, and g(/z(3/4)) = #(3/4) = 3/4 = A(3/4) = A(g(3/4)). Now since
g2 = g and h2 = h, and—as is easy to show—/2(x) = x implies fix) = x ,

Theorem 3.4 says that Pf = Ff, Pg = Fg, and Pn = Fh. Thus we know by
Theorem 3.6 or by inspection that each of the pairs in {/, g, h} has a common

fixed point; but there is no x £ I such that fix) = gix) = /z(x) = x.

The question as to whether commutative families 9~ of self-maps of /

if g = gf f°r all y, g £ &~) have a common fixed point has been studied

by Mitchell [12], Cano [4], and others. In view of the preceding, it is of interest

to note that the family & studied by Cano consisted basically of two classes,

one being a commutative class B of maps /:/—►/ such that Pf = Ff. A
consequence of the main result (Theorem 1 ) in [4] is that the class B has a

common fixed point. Although the hypothesis of Cano's Theorem 1 required

that all functions commute on all of / , the proof required commutativity only

on the coincidence points and fixed points of functions involved.
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