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INVARIANT AFFINE CONNECTIONS ON SYMMETRIC SPACES

H. TURNER LAQUER

(Communicated by Jonathan M. Rosenberg)

Abstract. The space of left invariant affine connections is determined for the

compact irreducible Riemannian symmetric spaces.

Introduction

The objective of this paper is to describe the space of invariant affine con-

nections on arbitrary compact irreducible Riemannian symmetric spaces. It

represents a sequel to [8] where the bi-invariant affine connections on compact

Lie groups were determined. The main result, Theorem 2.1, shows that with

few exceptions the only invariant affine connection is the canonical connection.

The proof of the main result is split into two cases. The Hermitian symmetric

case, considered in §4, results in an even stronger uniqueness theorem for a wide

class of bundles (see Theorem 4.1). The classification in the non-Hermitian case

is based on a case by case study using representation theory. Casimir operators

(§3) provide a key computational tool. Section 5 gives details about the main
computation and §6 gives a more precise description of the new invariant affine

connections on the spaces SUin)/SOin) and SUÍ2n)/SPÍn).

1. Invariant affine connections on homogeneous spaces

A homogeneous principal bundle is a principal bundle over a homogeneous

space G/H that has a G-action on the total space that is compatible with the

given action on the base manifold. Up to isomorphism in a natural category

[7, 8], such bundles are given by constructions of the form

Px = GxHU = GxU / igh,u)~ig,Xih)u).

This principal [/-bundle over the homogeneous space G/H is defined by means

of a structure homomorphism X: H —» U. The equation h-po = po-Xih) defines

this homomorphism canonically from the basepoint po = [ e, e ].

Wang's theorem [11] describes the space of invariant connections in a homo-

geneous principal bundle. Specifically, let g, f), and u be the Lie algebras of

G, H, and U respectively, and let TX : fj —> u be the differential of X. Then
the invariant connections in P¿ are described by linear mappings £,: g —► u
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satisfying £(x) = TA(x) Vx G f) and £(AdA x) = Ad¿(A) i(x) Vx G g, /z G H.

When the homogeneous space is reductive, i.e., when the Lie algebra g splits

into a direct sum h © m with Ad(//) m ç m, such connections are given by

linear mappings £, : m —> u satisfying ¿;(Ad/, x) = Ad¿(/¡) £(x) Vx G m, h G H.

Reductivity, which is automatic if H is compact or semisimple, will be assumed

throughout this paper.

An invariant affine connection on a homogeneous space G/H is a connec-

tion in the frame bundle that is also (/-invariant. By viewing a frame at a point

m G G/H as an isomorphism p: m —> TmÍG/H) and by letting the base point

be the canonical projection m —> TeHÍG/H), the structure homomorphism be-

comes Ad : H —» Aut(m). By Wang's theorem, the space of invariant affine con-

nections consists of all linear mappings £: m —* End(m) satisfying í(Ad/¡ x) =

Ad/,o£(x) o Ad/,-1 Vx G m, /z G //. The identification <^(x)(y) = z;(x,y)

shows that this is equivalent to the set of all bilinear mappings n : m x m —> m

satisfying n (AdA x, Ad/, y) = AdA n (x, y) Vx, y G m, h G //. Finally, the

universal mapping property of tensor product shows that this is equivalent to

the space Hornera ® m, m) of intertwining maps m ® m —► m (cf. [8, 10]).

2. Invariant affine connections on symmetric spaces

A symmetric space is a triple (C7, H, o) where a is an involutive automor-

phism of G and H is a closed subgroup of G lying between the fixed point

subgroup of o and the identity component thereof. A symmetric space has

a canonical reductive splitting g = fj © m defined by letting f) and m be the

+1 and -1 eigenspaces of the differential To : g -» g respectively. Standard
classification results [4] divide the simply connected compact irreducible Rie-

mannian symmetric spaces into two classes: type I in which G is simple and

type II in which G is the product of two copies of a simple Lie group which

are interchanged by the automorphism o . Invariant affine connections for type

II symmetric spaces correspond to the bi-invariant affine connections on simple

Lie groups which were considered in [8]. The main objective of this paper is

the following theorem, the proof of which will be delayed to §5.

Theorem 2.1. The set of invariant affine connections on type I symmetric spaces

consists of just the canonical connection in = 0) in all cases except for the

following :

AI SUÍn)/SOÍn) «>3,

All SUÍ2n)/SPÍn) zz>3,

EIV       E6/F4.

Each of these spaces has a one-dimensional family of invariant affine connections.

Note, SOÍ6)/SOÍ3) x S0(3) behaves like 5L(4)/5'0(4).

3. Casimir operators

Given a representation p: H —> Aut(F), the Casimir operator of V is de-

fined by r(L) — J2iTpiej))2 where {ej} is an orthonormal basis for the Lie

algebra (). This depends on the choice of an inner product on f) and in the

context of type I symmetric spaces, the natural inner product is given by the
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restriction to f) of -Bñ (the negative of the Killing form on q) . If V is ir-

reducible then T(K) is a negative or zero scalar. In particular, for symmetric

spaces the Casimir operator of the //-module m is -\ [6].

The Lie algebra f) splits into a direct sum ¿©(0y=1 ¡jj) of //-modules, where

3 is the center of f) and the h; are the simple ideals in h. In all the type I

symmetric spaces the center is, at worst, one-dimensional. This allows complex

irreducible representations of H to be expressed as V = ik-ß, Ax, ... , Ap).

This notation indicates that V is the tensor product of a one-dimensional repre-

sentation ik-ß) of the center together with the representation of highest weight

(A/) for each Hj. At the group level, complex representations of Sx are pa-

rameterized by the integers. The problem at the algebra level is to know which

representation corresponds to the integer 1. The point of this notation is to

force the //-module m to have 3-part (±1-/?). The nontriviality of iß) can

be proven from Lemma 3.1 and computation of Casimir operators.

The Casimir operator can be expressed in terms of indices of representations

[6]. In this context,

Tik-ß,Ax,...,Ap) = -y0-k2

= -yQ-k2

Here, KiAj) is the index of the representation p¡ : Hj —► Aut(A7-). It is

defined by tr( Tpjix) Tpj(y)) = KiAj) • (x, y)XlJ where ( , )f)J is the unique

Ad-invariant metric on rj7 normalized so that the longest root has length squared
equal to 2. The number /(h^) is the index of the embedding Hj —» G defined

by {x, y)B = Z(f)y) • {x, y)t,j for x, y G \jj . The number L(C7) is the length

squared of the longest root of G, relative to the Killing metric. Tables of

appropriate L(C7), /(bj), KiAj), and dim(A7) can be found in [6, 9]. In
particular, Table II in [6] lists the /({}_,■) for the type I symmetric spaces. Four

entries in that table listed as being greater than or equal to 1 are in fact equal

to 1 and the misprinted value for S0(5)/S0(3) x S0(2) should be changed
to 2. Table 1 in this paper lists the values of the yj constants for the type

I symmetric spaces along with the isotropy representation m. The maximal
weights describing representations depend on an ordering of simple roots and

the ordering that is used appears in [4]. Finally, the values of the yo 's were

determined using the following generalization of Lemma 7.1 in [8].

Lemma 3.1. Let G/H be a type I symmetric space with canonical decomposi-

tion g = h © m. Let V ç f^m be the kernel of the natural map A m -* fj

which is induced by the alternating bilinear map (x,y)t-+[x,y]:mxm —> h.

Then although V might be a reducible H-module, the Casimir operator of V

is exactly twice that of m, i.e., T(L) = -1.

Proof. The subspace V is //-invariant because Ad/, [x, y ] = [Ad/, x, Ad/, y]
V/z G H, x, y G m. Fix an orthonormal basis {ep} for g, relative to -Bs,

so that the initial e 's span rj and the remaining e 's span m. Use subscripts

i, j, k , ... for e 's in f) and subscripts a, ß , k , X, ... for e 's in m. In

particular, this will be used for the summation convention.   Define structure

-E

p

dim(h;) • L(G)     KjAj)

En
;=i

2 • lihj)

KjAj)

dim(A;)'

dim(A7]
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constants by [ e¡ ,e,\ = Cfi ek, [e¡,ea] = Cfa eß , and [ea,eß] = C¿fi e¡. Note,

this final expression reflects the fact that for symmetric spaces [ m, m ] ç f).

The ad-invariance of the Killing form implies C L = C£ so that the structure

constants have a cyclic symmetry along with the usual skew symmetry.

Suppose aaP ea A eß g V ç f\ m where the summation goes over all a

and ß by assuming aaß = -a^a. The assumption that this be in V gives

a"ß clßet = 0. It follows that

= piei)ia^CrK + aaKCfK)ieaAeß)

= íaKP C¿ dt + a"K CfK C,1 + aK" C,aK C$ + aaK C¿ C¿ )íea A e,)

= 2 • r(m) • (a^ *„ A.«?,) + (¿íkA Q, C¿) (<?« A *,)

= 2.r(m)-(a^eaA^),

where the third step follows from

[e¡,[et,ea]] = Cfa CtKpeK = T(m)ôKa eK

and the Jacobi identity

CßK Q¡ + Qa Cßi + Clß Qí = 0.   n

4.  HeRMITIAN SYMMETRIC SPACES

Suppose G/// is a symmetric space with canonical decomposition g =

f) © m. There is a one-to-one correspondence between 0-invariant almost com-

plex structures on G/H and real linear endomorphisms J : m —» m satisfying

J2 = -1 and /(Ad/, x) = Ad/, L(x) V/z G //, x G m. If in addition, m has
an Ad (//)-invariant inner product that is Hermitian with respect to J, i.e.,

( Jx, Jy ) = i x, y ), then G/H is a Hermitian symmetric space [5].

One fact that is demonstrated clearly by Table 1 is that although the subspace

m is irreducible as a real //-module for the compact irreducible Riemannian

symmetric spaces, it can split into two conjugate representations after com-

plexification. This splitting occurs precisely when the real representation m is

of complex or, conceivably, quaternionic type [2]. In fact, the quaternionic

case does not occur because the two parts of mc are not equivalent complex

representations. The real version of Schur's lemma shows that in such cases

Hom*(m, m) = C. The endomorphism J corresponding to i G C defines an

invariant almost complex structure on the space. Moreover, these symmetric

spaces are in fact Hermitian symmetric [4].

Theorem 4.1. Suppose G/H is a Hermitian symmetric space with H compact,

G semisimple, and the action of G on G/H effective. Then
(i) The canonical connection is the unique invariant connection in the bundle

G — G/H.
(ii) The canonical connection is the unique invariant affine connection on

G/H.
(iii) If p: H —> Aut(F) is an irreducible complex representation then the

associated bundle G xH Aut(K) -» G/H has a unique G-invariant connection.
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Table 1. Isotropy representations and coefficients of Casimir operators

for the type I irreducible Riemannian symmetric spaces.

Hermitian symmetric spaces are marked by * .

Symmetric Space mç iZzL
AI

AH

AIII

BDI

BDII

CI

CII

Dili

El

EII

EIII

EIV

EV

EVI

EVII

EVIII

EIX

FI

FII

G

SU (2)/S 0(2)

SU(3)/SO(3)

SU(4)/SO(4)

SU(n)/SO(n)

SU(2n)/SP(n) (n > 2)

SU(2)/S(UxxUx)

SU(l+q)/S(UxxUq)

SU(p + q)/S(UpxUg)

SO(5)/SO(2)xSO(3)

SO(6)/SO(2)xSO(4)

SO(2+q)/SO(2)xSO(q)

SO(6)/SO(3)xSO(3)

SO(7)/SO(3)xSO(4)

SO(3+q)/SO(3)xSO(q)

SO(8)/SO(4)xSO(4)

SO(4+q)/SO(4)xSO(q)

SO(p+q)/SO(p)xSO(q)

SO(3)/SO(2)

SO(5)/SO(4)

SO(n+l)/SO(n)

SP(l)/U(l)

SP(n)/U(n)

SP(p + q)/SP(p)xSP(q)

SO(2n)/U(n) (n > 3)

E6/SP(4)

E6/SU(2)-SU(6)

E6/SO(2)-Spin(\0)

EJFA

Ei/SU(i)

E1/SU(2)-SO(\2)

E1/SO(2)-E6

Es/SO(l6)

ES/SU(2)-E7

F4/SU(2)-SP(3)

F4/Spin(9)

G2/SU(2)xSU(2)

(ß)®(-ß)

(4*1 )

(2A,,2A,)

(2A,)

(h)

(ß)®(-ß)

(ß ,V,)®(-/3 .*i)

(ß,Xx,Xq_x)®(-ß,Xp_x,Xx)

(ß,2Xx)®(-ß,2Xx)

(ß,Xx,Xx)®(-ß,Xx,Xx)

(/?,Ai)®(-/?,A,)

(2A,,2A,)

(2A,,A,,A1)

(2A,,A,)

(Xl,Xx,Xl,Xl)

(Ai,A,,A.)

(Ai,A,)

(ß)®(-ß)

(Ai,A,)

(Ai)

(ß)®(-ß)

(ß,2Xx)(B(-ß,2Xn_l)

(Ai,A,)

(ß,X2)®(-ß,Xn_2)

(M

(Ai,A3)

(Z?,A4)e(-/?,A5)

(A4)

(A4)

(A,,A5)or(A|,A6)

(/?,A,)e(-/3,A6)

(X1)or(Xi)

(A,,A7)

(Xx,Xy)

(A4)

(A,,3A,)

i
2

1
8

J_     J_
16 '   16

n=l
8

2n±l

I
2

J_     i=l
2q '     2

2pq '  2{p+q) ' 2(p+q)

1     I
6 • 4

13     3
8 '  8 '  8

2« '     4

j.    _L
16 '   16

J.    J.    J.
20 '   10 '   10

3 <?(*?-!)
4(0+1) '   4(0+1)

lili
4 '  4 '  4 '  4

J_ 3 q(q-
2(q+2) '  2(q+2) '   4(?+2)

p(p-i)       q(q-i)
4(p+q-2) '  4(p+q-2)

1

1      I
2' 2

fi

4

I n-l
n(n+l) '     4

P(2p+1)        g(2^+l)
2(p+q+\) >  2(/>+i+l)

1 n+l
n(n-l) '     4

3
2

I      35
8 '   24

J.     11
32 '   8

13
6

7
4

Ü
6

J.     Ji
54 •    6

±
12

_L     133
20 '    60

1      7
6'   6

hi
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Proof. Theorem XI.9.6 in [5] shows that under these conditions on G/H there

is an element zq in the center of f) such that the complex structure J : m —>

m is given by 7(x) = [zn, x] Vx G m. By Wang's theorem [11] invariant

connections in the bundle G —> G/H are given by linear mappings £,: m —► f)

satisfying c;(Ad/, x) = Ad/, ¿;(x) Vx G m, h G H. Infinitesimally, it must be
true that ¿;[ z, x ] = [ z, £(x) ]   Vx G m, z g f). Letting z = z0 gives

¿(x) = -£(/2x) = -<^[z0,7x] = -[z0,tiJx)] = 0   VxGm.

So ¿; = 0 and t\ is the canonical connection.

For (ii), invariant affine connections are described by bilinear mappings

n: mxm -> m satisfying r¡ (Ad/, x, Ad/, y) = Ad/, z/ (x, y) Vx, y G m, h e H.
Infinitesimally, the requirement is

[ z, z/ (x, y) ] = Z7([z,x],y)-r-zz(x,[z,y])       Vx,yGm,zGf).

Letting z = z0 gives

Jníx,y) = níJx,y) + níx, Jy)   Vx,yGm,

or, by using this twice,

-n(x, y) = -nix,y) + 2-n(/x, 7y) - n(x, y)   Vx, y G m.

Thus

r\ (x, y) = 2 • »7 (7x, Jy) = 4-n (/2x, /2y) = 4 • z/ (x, y)   Vx, y G tn.

This shows zz = 0, i.e., n is the canonical connection.

For (iii), Wang's theorem [11] shows that invariant connections in the as-

sociated bundle G x H Aut ( V) —> G/H are given by linear mappings £ : m —►

End (F) satisfying

f(AdA x) = pih) o ¿;(x) o píh)~x    VxGm,/zG//,

or infinitesimally,

¿;([z,x]) = 7>(z)o¿;(x)-c;(x)°7>(z)   VxGm,zGf).

In particular,

c;(x) = -c;(./2x) = -c;([zo,./x])

= -Tp iz0) o ¿j(/x) + ZÍJx) o /> (z0) = 0

because Tp (zo) is in the center of End (F). To see this, let X be an eigenvalue

of Tpizçf) and Sx be the corresponding eigenspace. Then Sx is invariant under

the action of fj. Indeed, for z ci) and v c Sx

Tp íz0)ÍTp (z) v) = Tp (z) Tp (z0) v + Tpi[ z0, z])v = X Tp (z) v

because zq is in the center of h . By the irreducibility of the representation p,

Sx = V. So Tp(z0) = XI and Tp (z0) is in the center of End(F).      □

5. The proof of Theorem 2.1

The determination of all invariant affine connections on type I symmetric

spaces goes as follows. First, by Theorem 4.1 the canonical connection is unique

for Hermitian symmetric spaces. This can also be observed from the represen-

tation theory. The tensor product of the representations (J • ß) and (zc • ß) of
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Sx is the representation ((_/' + k) • ß). This shows that the central parts of the

representations in mc ® mc will always be of the form (2 • ß), (-2 • ß), or (0).

These will never give intertwining maps m ® m —► m.

In the non-Hermitian cases, a case by case computation was used to determine

the multiplicity of m in m ® m. Key aspects of the computation involve the

splitting of m ® m into 52m © /\2 m, dimension counting, and Young tableaux

[3]. The fact that the trivial representation appears exactly once (and in 52m )

was needed in the exceptional cases where dimension counting was used. In

addition, Lemma 3.1 and the computations in Table 1 were particularly useful

for determining the decomposition of A2 m. Of course, the representation

whose maximal weight is twice that of m is also known to appear in m ® m.

For example, in the case AI = 5C/(zz)/50(zz) for n > 5 , the subspace m =

Í2XX). Young tableau computations give f\2m = (2Ai + X2) © ÍX2) and 52m =
(4Ai ) © Í2X2) © (2Ai ) © (0). These need to be modified slightly in the cases n = 5
and n = 6. The copy of m in S2m gives rise to a one-dimensional family of
invariant affine connections.

The example EIV = Eç/F* also has a one-dimensional family of invariant

affine connections. In this case, dimensional considerations and Casimir oper-

ators give m = (A4), /\2m = (A3) © (Ai), and 52m = (2A4) © (A4) © (0). This
was also verified by an explicit weight computation using [1]. The copy of m in

S2m gives the invariant affine connections. Note, this computation also shows

that the corresponding map n : m x m —► m is symmetric.
A number of examples include a copy of 50(2) or 50(3) with the corre-

sponding action on m being given by the two-dimensional representation (Ai).

Since (Ai) ® (Ai) = (2Ai) © (0), such examples never have nontrivial invariant
affine connections.

The examples EVI = £7/5l7(2) -50(12) and EVIII = £8/50(16) seemed
somewhat peculiar. There does not seem to be any reason why m should be

built out of one spinor representation as compared to the other — (A7) vs.

(Ag) in the case of EVIII. Known results about tensor products of spinor

representations [3] show that m does not appear in m ® m in either case.

6. Natural mappings of invariant affine connections

In [8] it was proven that bi-invariant affine connections on a Lie group G can

be described by bilinear mappings n: g x g -* g satisfying n (Adg x, Ad# y) =

Ad g tjix, y) Vx,yGg,gG0. In particular, the Lie bracket gives such a
mapping on an arbitrary Lie group. When G is compact and simple all such n

are multiples of the Lie bracket except in the case of SU in) for zz > 3 . In the

case of SU in), there is a two-dimensional family of such connections spanned

by mix, y) = [x,y] and

mix, y) = i • íx • y + y • x) - \ • tr(x • y) • il.

In this section it will be proven that the new invariant affine connections on the

spaces 50(zz)/50(zz) and 50(2/z)/5/>(zz) are induced from the mapping n2.

Theorem 6.1. If (0, H) is a reductive pair with reductive decomposition g =

Í) ©m, then there exist mappings i*: J^fjxG(/;'r(0)) —> s/HxHÍFríH)) and n» :

j/GxG(Fr(0)) - s^GÍFríG/H)) defined by (z*z/)(x, y) = (1/ (x, y))» Vx, y G
f) and (7t,z/)(x,y) = (z/(x,y))m   Vx,yGm.
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Proof. Since the inclusion maps h —* g and m —> g and projection maps g —> f)

and g —» m are all linear, the mappings /*// and 7t»zz are clearly bilinear.

By reductivity, they are also //-module maps and thus (z'*z/)(Ad/, x, Ad/, y) =

Ad/, (z'*/z)(x,y) Vx,y é fj and (rt»z/)(AdA x, Ad/, y) = Ad/, (7z,îz)(x, y)
Vx, y G m.    D

In the case of type I symmetric spaces, the Lie bracket operation on G never

descends to give invariant affine connections on G/H. This is just the prop-

erty [ m, m ] C rj. However, the operation 0(x, y) = i • ix • y + y • x) of u(zz)

can be pushed from U{n) to SU in), giving the mapping n2, and then to

50(zz)/50(zz) and 50(2«)/5P(n) as described in Theorem 6.1. A straightfor-
ward calculation shows that the resulting image is nontrivial in all cases except

for 50(4)/5/>(2). These are precisely the invariant affine connections in Theo-

rem 2.1. Note, in both cases the image of n2 restricted to mxm is automatically

contained in m — the projection back onto m is not necessary. By comparison,

in the case SUip + q)/SÍUp x Uq) the restriction of r\2 to m x m has image

contained in f) so that 71* n2 = 0.
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