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Abstract. Let (M,dM) be a compact «-manifold with boundary, orientable

over a field K with characteristic q . For f:(Y,dY)-*(M, dM), with Y

compact, and (X, dX) a compact pair, g : X —► M, let (P, dP) = {(y, x) e

Yx(X, dX)\f(y) = g(x)} denote the fibered product, with p as the projection

to (X, dX). In Cech-cohomology with coefficients K , we show that if H"(f )

is injective then so is H* (p)—and a number of strengthenings, which point to

a concept of ^-essential map from one compact space to another.

Let (M, dM) be a compact zz-manifold with boundary, orientable over the

ring R. For /: (T, dY) -» (A/, dM) and iX,dX) a compact pair, g: X -+
M, let (/>, dP) = {(y, x) £ Y x iX, dX)\fiy) = gix)} denote the fibered
product, with p as the projection to iX, dX). Also we fix a coefficient module

G over R for homology or cohomology, and any compact space in this paper

is assumed Hausdorff.

In [1] we showed that if iX, dX) is a ¿/-simplex, g one-to-one (this is

dispensible, by the methods of the present paper), M connected, and every-

thing is semialgebraic (A/, dM, Y, dY, f, g, X, and dX), then letting Gx =

f[H„iY,dY;G)] C HniM,dM;G) ~ G and C72 = p*[HdiP, dP; G)] ç
HdiX,dX;G)~G,one has GXCG2.

Here we restrict R to be a field and prove an equivalent result (i.e., showing

also that cycles can be lifted through p) without any of the above restrictions.

In particular, since we no longer have semialgebraicity, the formulation is rather

in terms of a weakly continuous cohomology theory H, so Y is also assumed

compact.

Theorem. If //"(/) is one-to-one then H*ip) is also.

Remarks. The result of [1] was a basic tool for [2]; in particular, one needed

arbitrary R to show in [2] that it was a specific game theoretic property—the

decomposition property—that forced one to use only fields R for defining sta-

ble sets. (Those results suggest a look at conjectures of the type: if a class of

essential proper maps from locally compact spaces to Euclidean spaces is stable

under products (and, say, homotopy invariant) then there is some character-
istic p (zero or prime) such that those maps are all essential in the sense of
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Cech-cohomology with compact supports and with coefficients Zp (with Zo =

Q).) Given that the decomposition property basically limits consideration to

fields R, the present result is the tool nneded for proving the "small worlds"

property mentioned in [2], as shown in a parallel paper [3]. The situation, nev-

ertheless, remains unsatisfactory in that we cannot simultaneously handle (even

in a semialgebraic framework) arbitrary coefficient modules and arbitrary com-

pact pairs. Here the point of getting rid of any semialgebraicity restriction is to

stress the purely topological nature of such properties.

Lemma 1. For a map p: (P, dP) —> iX, dX) of compact pairs, H*ip) is one-

to-one if and only if it is so for some vector space G' of positive dimension over

the field R.

Remark. Therefore, this property depends only on the characteristic q (zero

or prime) of the field R, since G can always be viewed as a vector space over

the prime field Z9 . Thus, we can assume G = R = Z? .

Proof of Lemma 1. Use the universal coefficient theorem [5, VI.8.11] (torsion

products are zero since R is a field).

Remark. Similarly, orientability of the manifold when the ring R is an algebra

over a field K depends only on the characteristic of K and can be expressed

purely in terms of Cech-cohomology as the isomorphism of H"iM, dM; K)

with H°iM,dM;K).

Lemma 2. Under the assumptions of the theorem iwithout the map g), there

exists a triangulable, compact, orientable ñ-manifold M, a compact space Y, a

map f: Y —► M with H"if) one-to-one, and one-to-one maps i: M —> M and

J: Y —> Y such that for every compact pair iX, dX) and every map g: X —> M,

the fibered product of i o g and f equals iunder j) that of g and f, with the

same projection p.

Proof of Lemma 2. First observe there is no loss in assuming also d Y compact:

ifitisnot,let dY' denote its closure, i: (F, dY) ç (Y, dY'), /': (Y, dY') ~*

iM,dM). Then f = f'oi so H"if) = Hnii)oHnif'),hence //"(/') is also
one-to-one; we can work with d Y' instead of d Y . By Lemma 1, we can now

assume G is the prime field. We first reduce the problem to the case where

dM = dY = 0.
If dM t¿ 0 , glue M to a copy of itself along dM ; thus, (Af+ , dM+) and

(A/"~, dM~) are two copies of M and dM+ and dM~ are identified. In

this way, one obtains M, which is clearly a compact manifold with subsets

Af+ , M~ , and dM. Do the same with (7, dY), obtaining a compact Y that

contains Y+, Y~ , and dY. Then / induces naturally a_map f:Y—>M.

Send iX, dX) to the corresponding subsets of M+ ç M. We identify M

with M+ and Y with Y+. It follows that the problem will be reduced to

the case dM = dY = 0 if we prove that M is orientable and that Hnif) is

one-to-one. By definition of orientability, and by [5, VI.4.8], it suffices to prove

both jjoints on each connected component separately, i.e., we can assume M

and M connected.

Observe now M has a locally flat embedding into some space RN, with

N > n - 2 + max(8, zz), i.e., such that every point of M has a neighbourhood

in R^ that is an (JV - zz)-ball product-bundle with its intersection with M as
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base. (For example, choose for each point x an open neighbourhood Ux with

a homeomorphism <px from Ux to the open unit ball B in R" . Let hir) =

min[l,2(l -r)+], Vx = {y c Ux\\\Vx(y)\\ <■$.}, ipx:M^ R"+1: vAy) =
hi\\<Pxiy)\\)il, <Pxiy)) for y £ Ux , \px{y) = 0 for y i Ux . \px is clearly con-

tinuous and separates points of Ux as well as separating each of them from any

point not in Ux . Then let (x,)¿€/ be a finite set such that the Vx¡ cover M :

the function y/ = (^,)¡e/ is the required embedding, with N = (#/)(zz + 1),

choosing #/ > 4 - \n to have N sufficiently large. Indeed xp is clearly injec-

tive, and every point x of ^(Af) has a neighbourhood in ipiM) of the form

Vx¡ on which the projection p to a subset of zz coordinates separates points,

so that the N-n others are a continuous function h of those, allowing imme-

diately the construction of the (TV - zz)-ball product-bundle as W = {(x', y') c

W x RN-"\dix', pix)) < e, d{y', A(x')) < e}, with projection p on the first

factor (identified with W n M), where e > 0 is choosen sufficiently small so

that W n y/iM\Vx¡) = 0 .) Therefore, by [6, 4.5], Af has a normal bundle in

R^, Le., an open neighbourhood O and a retraction p from O to Af such that

iO, M, RN~n, p) is a fiber bundle [5, II.7] (using also invariance of domain

[5, IV.8.16] to be sure).

Consider then the open set U in M consisting of M+ (= Af) together

with an open collar [5, VI.2] of (A/"- , dM), with the corresponding retraction

q: U —► M+ . Let V = p~xiU) and r: V —» Af : r = q o p . Then r is a re-

traction from the neighbourhood V of Af in R^ to Af. Embed Y in a cube

C = [0, l]7, and consider (Tietze) a continuous extension f of f from C to

R^ . Consider the directed system of sets Ca = Ya x [0, 1 \I\Ja where Ja is a

finite subset of / and Ya a polyhedron in [0, l]Ja such that Y ç Ca. Since

the Ca decrease to Y, there exists ao such that /(Cao) ç [/. Then define

f: Cao —► Af as / = royJCa , and henceforth we consider only a > ao . Given a

collaring of <3Af [5, VI.6.2] one can construct a homotopy relative to öAf be-

tween the identity on Af and a map sending a neighbourhood V of dM into

f9Af. Let /': Cao —► Af be the composition of / with this map; then /' is ho-

motopic to / as a map from (7, dY) into (Af, dM), so //"(/') ^ 0; /' is

homotopic to / as a map from Y to Af, so //*(/') = //*(/). It suffices thus

to do the proof for the map /' ; i.e., we can assume that /: Cao -» Af maps

a neighbourhood U of dY into <9Af. This neighbourhood can, by compact-

ness, be chosen to depend only on finitely many coordinates, say Ja fè Jao);

then let Ya = Yao x [0, lJ-kV«« , Ca = Cao : a sufficiently fine subdivision of

the triangulation of the polyhedron Ya will be such that, for any simplex er,

letting ô = o x [0, l]'\Ja ,ifondY¿0 then f(â) ç dM. Denote by dCa

the union of all those ô : we have (Ca, dCa) = iKa, dKa) x [0, l]'\J°, where

Ka and dKa are (the space of) a simplicial complex and a (full, by one more

subdivision) subcomplex, respectively. Let also ia: (T, dY) ç (Ca, dCa) and

fa\ iCa,dCa) -> (Af, dM). Thus since //"(/) = H"ifa o /a) ¿ 0, we have

also Hnifa) t¿ 0. The system (CQ, ¿3Ca) is directed downwards by inclusion,

with intersection (T, ¿37) ; so the Ca form a projective system with limit 7

and the maps fa:Ca^M and /: 7 —> Af commute with this system. By the

continuity property [5, VI. Example C.2, VI.6.6], it follows that H"if) will be

nonzero if we prove that H"if ) is nonzero for each a. Thus our problem is
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reduced to the case where (7, dY) = (AT, dK) x [0, l]7, with (AT, dK) a sim-

plicial pair. Now let ht: iY,dY) -+ (7, 97): /z,(/c, (x,),e/) = (/c, (ijcf-)/e/).
ft — f ° ht, and zt be the projection from (7, 97) to (AT, 9 AT): fç, = cpo %

and / are homotopic maps from (7, 97) to (Af, 9Af), and similarly f0 and

/ are homotopic from 7 to Af. This thus reduces the problem to the case
where furthermore / = <f> o n, where </> is a map from (AT, dK) to (Af, 9 Af).

Finally, since n is a homotopy equivalence, it suffices to consider the case where

(7, dY) itself is a polyhedral pair. All homology and cohomology theories are

now equivalent on (7, dY) and on 7 [5, IV.8.10, V.5] and on (Af, 9Af) and

on Af singular cohomology and Cech-cohomology coincide, respectively ([5,

VI.8.8, VI.9.9, VI.1.7] and collaring). Thus we know //"(/) # 0 and want to

prove Hnif) ± 0, all in singular cohomology.

By the universal coefficient theorem [5, V.5.3] H" and H„ are dual finite-

dimensional vector spaces; so //"(/) being nonzero is equivalent to H„if) ±

0. Thus, let c be a simplicial zz-cycle on (7, dY) that is mapped to a nonzero

singular cycle on (Af, dM) (using [5, IV.6.8])—thus, to a fundamental class

z since R is a field and (Af, 9Af) is compact and connected [5, VI.3.8].

Let c+ and c~ denote the corresponding chains on 7+ and on 7~ ; then

c = c+ - c~ is an zz-cycle on 7 with image z e //„(Af ; R). z is nonzero,

e.g., because its image in //„(Af, Af - x; R) equals the nonzero image of z

in //„(Af, Af - x\ R) for x £ M+\dM (cf. [5, VL3.8]). This yields both the
orientability of Af (again [5, VI.3.8]) and that //„(/) is nonzero.

Hence we can assume 9 7 = 9 Af = 0 .

Recall now our previous normal bundle (O, Af, R^-" , p) for Af as em-

bedded in R^ . In particular, Af is a euclidean neighbourhood retract, and so

by [6, 1.3] the bundle contains a ball-bundle, i.e., there exists a compact pair

("tubular neighbourhood") (7\ dT), with T c O and Af ç T\dT, such that
the restriction of p to (T, dT) is a ball-bundle.

Apply now [5, VI.10.15] to obtain 0(1) nonzero in HN~niRN, RN\M; R).

We want to show that the image U of 0(1) in (T, dT) by inclusion and

excision (collaring and [5], IV.8.9) is an orientation of the bundle. It suffices
to do this separately for each connected component of Af. For E ç Af, let

TE = Tnp~xiE), dTE = TEndT, dE is the restriction of 0(1) to (r£, TE\E)
and UE the restriction of U—or of 8E—to (7g, dTE). For E = {m} , we
will write simply Tm , etc.

Thus assume we had Um = 0 for some m. Since Tm is contractible, the

connecting homomorphism in the functorial exact cohomology sequences for

iTm, dTm) and for (Tm, Tm\{m}) is an isomorphism; hence the inclusion of

the first pair into the second will induce an isomorphism because the inclusion

dTm ç Tm\{m} does, being a homotopy equivalence. Thus we have also 6m =

0.
Denote then by 'V the collection of open sets of Af that are homeomorphic

to R" and on which the bundle is a product bundle. For any V c'V with

m c V we would still have d y = 0 since the inclusion (!Tm, Tm\{m}) ç

(7V, TV\V) is a homotopy equivalence. Hence % = {V £ ^¡Oy = 0} would

be nonempty and any V £ % disjoint from any V £ %/~\% ; by connexity,

% = "V ; i.e., 6y = 0 V V £lff. Assume now W is an open set in Af with

6W = 0 and Fef. Let W = W u V, S = W n V, and d = N - n, and
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consider the exact Mayer-Vietoris sequence [5, V.4.9]:

Hd~\Ts, Ts\S)S-^HdiT~, T~\W)

-+ HdiTw , TW\W) © HdiTv , Ty\V).

Since S ç V, it follows that (7$, TS\S) is a product-bundle, so by Künneth's

isomorphism [5, V.6.1] Hd~xiTs, TS\S) is zero. Hence Ow and 6y (which

are restrictions of 6~) being both zero imply that 0~ = 0 also. Therefore,

by induction on k, we will have dw = 0 for every union W of k elements

of "V ; thus, by compactness, 6m = 0(1) = 0. This contradicts [5, VI.10.15],
since //*(Af) is not identically zero.

Thus our ball-bundle is orientable. _

By [5, V.7.6], the fibered product 7 of / and p is then an (¿V - zz)-ball

bundle with the projection q to 7 , and say / as projection to T, and U =

f (C7) as orientation. Further our inclusion of Af in T\dT yields 7 ç

7\9 7, and / is therestriction of J to 7. Write also (Â7, 9Ä7) for (7\ dT).
Observe first that (Af, dM), as a tubular neighbourhood, is clearly a compact

manifold with boundary, and as embedded in RN , is orientable.

By the Thorn isomorphism theorem [5, V.7.10] we have a commuting diagram

//"(Af) Q        H"iY)
l Pu i 9¡j

HN(M,dM)   L    HN(Y,dY)

with Puip) = p*ip)U U, q-jjin) = q*{n)lif ([/*), and where the vertical arrows

are isomorphisms. Therefore /* being one-to-one would imply / is one-to-

one. Actually, what we need is a version of this theorem in Cech-cohomology

(there are trivial examples that this matters, e.g., projection on Sx of the closure

of the graph of the curve sin(7z2/0) (0 < |0| < n)) : for such a version, cf.

e.g., [2, part II, Appendix IV], and use [5, VI.9.5] and the five lemma for the

isomorphism of singular and Cech-cohomology on Af and on (Af, 9Af).

Thus J: (7, dY) ■-» (Ä7, 9Ä7) is such that HN(f) is one-to-one, that f[Y =

f and that fiY\Y) and 9Af are disjoint from Af (here 7 and Af denote
the original objects). And (Af, 9Af) is a compact ¿V-manifold with boundary,

embedded in R^.
Observe also that connected components of Af_and Af correspond to each

other. Consider then a cube in R^ containing Af, and subdivide its triangu-

lation until every simplex that intersects Af is contained in M\dM. Let K

be the union of those simplices. Subdivide the triangulation further such that

every new simplex that meets K is contained in Af\9Af. Let K be the union

of those_ simplices. A further subdivision yields a regular neighbourhood L of

K in K—or in the cube, with further L c M\dM. Hence, by [4, 3.10], L
is a compact PL-manifold with boundary dL ; further Af ç L\dL, and the

connected components of L correspond bijectively to those of Af and of Af,

by construction.

Let_9Af_= (Af\L) U dL. We want to show that /*: HN(M,dM) ~>

HNiM, dM) is one-to-one. It clearly suffices to prove this on each connected

component separately. There both spaces are the underlying field R (the first
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by excision), so it suffices to prove z* ^ 0. Including a small cube in front

and our large cube at the end would otherwise yield by composition that i* is

still zero when L is a small ball included in a bigger ball Af, contradicting

homotopy invariance. Let J: (7, dY) ç (7, dY), with dY = f~ (9Á7), and

let /: (7, dY) -+ (A?, dM) equal f. Then /* o i* = j* of*, so HNif) is
also one-to-one. ____

Finally, let (Af',9Af') = iL,dL) ç (M, dM) and (7', dY') =

f-xiM',dM') ç (Y,dY). By [5, VI.6.5], both inclusions induce isomor-

phisms in Cech-cohomology; so, with /': (7', dY') —» (Af', 9Af') equal to

/, we also have HNif) one-to-one. As before, /fr = / and f'iY'\Y) and

9Af' are disjoint from Af. And now (Af', 9Af') is a compact, orientable

PL-manifold with boundary.
Finally, repeat the beginning of this proof with those objects to remove the

boundaries.

Proof of the theorem. By Lemmas 1 and 2, we can assume that G = R is the

prime field (the theorem being trivially true in the zero-dimensional case), and

that Af is a PL-manifold, with 9Af = 97 = 0. Further, by [5, VI.4.8], we
can assume Af connected. We will first prove the result in the case where g

is one-to-one. X can then be viewed as a subspace of Af and (P, dP) as the

inverse image by / of (X, dX) in 7, with p the restriction of / to this

space.
We first reduce this problem to the piecewise-linear case.

Fix a triangulation of Af and view Af as the space of this simplicial com-

plex, thus as a subcomplex of the simplex Ak on the set of vertices of the

triangulation. By [5, III Example A.l] Af is a neighourhood retract in A*. , i.e.,

[5, I Example C.l] there is a neighbourhood U of Af in A.k and a retraction

r from U to Af. Embed 7 in a cube C = [0, l]7, and consider a continuous

extension f of f from C to Ak . For every finite subset J of /, denote by

nj the projection from C to [0, l]J , and let Cj = 7rJ1(zty(7)) ; since the Cj

decrease to 7, there exists Jq such that fiCj0) C U. Define then / on Cj0 as

/ = rof. Now /: Cj0 —► Af, and henceforth, we consider only J D Jo . For any

Ja Q J0), let Ca = CJa, fa = flc„, iPa, dPa) = f-xiX, dX), fa = f](Pa,dPn).
Since /: 7 —► Af factors into an inclusion and fa, it follows that Hnifa) is

one-to-one also. So if the theorem was established for the Ca and fa, the

weak continuity property [5, VI.6.6] will imply the result for 7 since (Pa, dPa)

decreases to (P, dP). Thus we can assume 7 = 7o x [0, l]7, with 7o finite-

dimensional. The same argument shows that we can replace Yq by a compact

polyhedron containing it, and similarly that we can replace iX, dX) by the

complex of all simplices intersecting it, for some sufficiently fine subdivision of

a triangulation of Af. We are thus in the case where iX, dX) is a pair of full

(using one further subdivision) subcomplexes of Af, and 7 = 7o x [0, l]7,

where 70 is a finite simplicial complex. If the result were not true, we would

have v £ H*iX,dX), v ¿ 0, and f\v) = 0 in //*(P, dP). Use then the
weak continuity property as above to find a sufficiently fine subdivision of the

triangulation of Af such that, denoting by iXx, dXx), the simplicial neigh-

bourhood of (i.e., the union of all simplices of the subdivision intersecting)

(X,9Z),onehas v = i*vx , for vx £ H*iXx, dXx), i: iX, dX) ç (X,, dXx),



ESSENTIAL MAPS AND MANIFOLDS 519

and such that f*ivx) = 0 in /7*(P, ,dPx), with (P , dPx) = f~xiXx ,dXx).
Note that /, as a continuous map to a compact metric space, depends only

on a countable set /o of coordinates in /. Since projections on 7ox[0, 1]7° and

on (P, dP) x [0, 1]7° are homotopy equivalences, we can assume / countable.

Then 7 is compact metric, and there exists s > 0 such that the image of

every ball in 7 of radius < e is contained in some star of the triangulation

of Af. So there exists a finite subset, /o of /, and ô > 0, such that for any

ball C of radius < ô in 7ox[0, 1]7°, /(zz_1(C)) is contained in some star of

the triangulation of Af, using n for the projection from 7 to 7o x [0, 1]7°.

Since 70 x [0, 1]7° is a polyhedron, we can think of it as Yq itself; and can

then subdivide its triangulation such as to have that the star of every vertex

has diameter < ô ; now 7o is a polyhedron, / is countable, and /~(7i-1(C))

is contained in some star of the triangulation of Af for every star C in 7o

in projects 7 to 70). We now use the simplicial approximation theorem.

Consider the map <f> mapping every vertex x of 7o to some vertex of Af such

that / (star(x) x [0, l]7) ç star(</>(x)), extend <p by linearity to T), and define

/:7-»Afas(/3o7t. </> is clearly a simplicial map, and for every y c Y the

simplex spanned by /(y) contains /(y).

So (P2, dP2) =J~\x, dX) is a pair of subcomplexes of 70(x[0, l]7) with

(P2, dP2) C (P , 9Pi). Thus the linear homotopy connecting / and / is

a homotopy both for maps from 7 to Af and for maps from (P2, dP2) to

iXx, dXx ). Hence our assumption on / still applies to /, and the following

diagram is homotopy-commutative:

iP2,d_P2)   ±   (Pi,9P)

if if

ix,dx)   ±  ixx,dxx)

Then f*ivx) = 0 implies 0 = ij* ° f*)ivx) =7*(z'*Oi)) =/*(«); the result is

also not true for the map / = tf> o n .

Since n is a homotopy equivalence, it follows finally that the result is also

false for the simplicial map <p from the polyhedron 70 to Af : it suffices to

prove the theorem when iX, dX) is a pair of (full) subcomplexes of Af, 7

(the space of) a finite simplicial complex, and / a simplicial map. (P, dP) is
then also a polyhedral pair, so that now all homology and cohomology theories

are equivalent.

Next we show how to reduce the problem to the case dX = 0 .
Since we are in the simplicial case and coefficients belong to a field, the

universal coefficient theorems yield that Hq and Hq are dual finite-dimensional

vector spaces, so / * being one-to-one is equivalent to /* being onto. We have

to show that every cycle on iX, dX) can be lifted to a cycle on (P, dP).

Let Sx = [-1, 1], where 1 and -1 are identified, and let 7' = 7 x Sx ,

M' = M x Sx, and f' = fx ids, . For x e X let x+ = (x, ¿i(x, dX)) £ M'
and x~ = (x, -¿/(x, dX)), using for d a piecewise linear distance of diameter

< 1. X+ and X~ are the images of X in Af' under those maps and note

dX+ = dX~ = dX. Also, by the Künneth formula, our assumptions are still

valid for 7', Af', and f . Then if c is a cycle on iX, dX), it can be viewed

as a chain on X+ ; subtracting the corresponding chain on X~ yields a cycle

c' on X' = X+ U X~ ; let c' be a cycle in P' mapped to c'. If c denotes the
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chain c' where the coefficients of all simplices that are not sent to X+ are set

to zero, then c is a cycle on (P+, dP) mapped to the cycle c on iX+ , dX).

The homeomorphism setting the Sx -coordinate to zero yields the conclusion

for the original sets iX, dX) and (P, dP).
Observe finally that it suffices to prove the theorem in the case where X is

connected; otherwise, X splits into finitely many connected components whose

inverse images in 7 are separated, so that all homology and cohomology groups
decompose into the corresponding direct sums [5, IV.4.5, V.4.10]: it suffices to

have the result on each connected component separately.
Consider now v £ HdiX), v ^ 0. By the above-mentioned duality between

homology and cohomology, there exists z 6 HdiX) with v n z ^ 0 [5, V.6.19].

Now follow the proof of [5, VI. 10.15]: by [5, VI.9.2], Lemma VI. 10.14 still ap-
plies; use VI.9.8, VI.9.9 and VI.9.2 to find V and v', and the above-mentioned
z instead of using VI.3.12. One thus obtains zz £ H"~diM, M\X) such that

u U v £ //"(Af, M\X) is nonzero.
By [5, VI.1.11, V.6.8, and the definition of the cup product before VI. 10.15],

one obtains the commutative diagram

HdiX)      V$      //"(Af, M\X)

if if
HdiP)    uOu)     //"(7, Y\P)

Since ullv ^ 0, to prove f*iv) ^ 0, it suffices to prove that the right-hand

map /* is one-to-one.

The functoriality of the cohomology sequence [5, V.4.13] yields the commu-
tative diagram

HniM,M\X)    ■£    //"(Af)

if if
//"(7, Y\P)     ->    //"(7)

Hence, the right-hand map /* being one-to-one by assumption, the left-hand

one will also be—thus finishing the proof—as soon as we show that i* :

//"(Af, M\X) —> //"(Af) is one-to-one. By the universal coefficient theorem [5,

V.5.3, R is a field], i* is the transpose of z* : //„(Af) —► //„(Af, Af - X), so it
suffices to prove the latter is onto. Because singular homology has compact sup-

ports [5, IV.4.6], applying the five lemma to the exact homology sequence yields

that //„(Af, M — X) is the direct limit of //„(Af, M-V) when V varies over
the open neighbourhoods of X . Thus by taking a sufficiently fine subdivision

o

of the triangulation of Af, it suffices to show that z, : //„(Af ) —> //„(Af, Af - V)
o

is onto where V is the union of the stars of all vertices of X. Denote by V the

closure of V and let dV = V- V. By excision, //„(A/, M-V) = Hn(V, dV)
and iV, dV) is an zz-dimensional pseudomanifold with boundary [5, III. Ex-

ample C] because Af is an zz-manifold and the subcomplex X is connected.

The result is now obvious in simplicial homology theory: there are no bound-

aries in dimension zz, the space of zz-cycles on ( V, 9 V) is (at most) one-

dimensional [5, IV. Example E.l], and for the same reason a nonzero zz-cycle

in Af (which exists, by orientability) assigns a nonzero coefficient to each sim-

plex, hence its restriction to (K, dV) is a nonzero zz-cycle.

This proves thus the result when g is one-to-one.
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Consider now the general case, but assume first X is finite-dimensional; i.e.,

X can be embedded in Rk . Denote by h such an embedding in Sh , and let

iY,dY) = iY^dY)xSk , iM,dM) = iM,dM)xSk, / = / xls*_, and g =

ig, h): X —► M. Our previous result can be applied to (Af, 9Af, 7, dY, f,

X, dX, g) so that p: (P, dP) —> iX, dX) is one-to-one in cohomology. But

(P, dP) projects (homeomorphically) to (P, dP), say by a map q (inverse

given by h), and p = p o q , so H*ip) = H*iq) o H*ip) : H*ip) is also one-to-

one.

Assume now iX, dX) = (Xo, dXo) x [0, I]1, with Xq finite-dimensional,

g = go o n, 7t denoting the projection of iX, dX) onto iX0, dX0). Then

also, (P, dP) = (P0, 9Po) x [0, l]7 and p = p0 x id[0<xy ■ The previous case

yields that H*ipo) is one-to-one: hence (e.g., by the functoriality of Künneth's

formula for Cech-cohomology), //*(/?) is one-to-one also.

In general, view (triangulation) as before Af as a subcomplex of Ak and X

as a subset of the cube [0, 1 ]7, with as first (/c+1) coordinates the compositions

of g with the coordinate mappings of Ak denoted by Iq ■ Denote by no the

projection on [0, 1]7°, let Xq = noiX): g can be viewed as a (continuous)

map, say g0, from X0 to Af, so we can extend g to n^x iX0) by g = go o no .

For any finite subset Ia of / containing /o, let iXa, dXa) = [naiX, dX)] x

[0, 1]7\7» : the iXa, dXa) decrease to iX, dX), the corresponding (PQ, dPa)

to iP,dP), and the maps pa that all commute with those inverse systems

satisfy for all a that //*(/?„) is one-to-one, by the previous case. Thus, by the

weak continuity property [5, VI.6.6], it follows that also in the limit //*(/?) is

one-to-one. This finishes the proof.

We obtain the following sharpening (similar to the previously mentioned ap-

plication) only under an additional assumption of metrisability, which "should

not" be there.

Proposition 1. If in addition X is metrisable there exists a closed subset P of

P such that H°ip): H°iX) —► //°(P) is an isomorphism and such that for the

fibered product p of p with any map g: X -> X, where iX, dX) is a compact

pair, one has that H*(p) is one-to-one.

Proof. We first assume iX,dX) an orientable ¿/-manifold with boundary.

Increasing the dimensions of 7 and Af, as at the end of the proof of the

theorem, we can assume g is one-to-one, hence the inclusion X C M. For

each of the finitely many connected components iXa , dXa) of iX, dX), let

iYa,dYa) = f~xiXa,dXa), and let fa be the restriction of / to iYa,dYa)

(and iXa, dXa)). By the above theorem, we know Hdifa) is one-to-one. Let

n = {Oß\ß £ B} be an open partition of Ya and dOß = Oß n dYa. Then

HdiYa,dYa) = YlßHdiOß,dOß), by [5, VI.4.8] to be extended by exactness

and five lemma to pairs. Hence, there exists On £n such that Hdif*) is one-

to-one, letting f£ be the restriction of fa to iOn,dOn). Denote by ^ an

ultrafilter over the partitions n , and let V = lin% On . Clearly V is compact

and connected. Further, let Vzz e ^, Ku = cl(|J^eu On), with dKu = Kur\dYa ,

9V = V ndYa. Then HdiXa,dXa) -» HdiKu,dKu) is injective for all

zz G ^ since its composition with HdiKu, dKu) -> HdiOn, dOn) is so for

n £ u.   Since iV,dV) = C\u€^iKu, dKu), it follows then from [5, VI.6.6]
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that HdiXa, dXa) -> HdiV, dV) js one-to-one. Now select such a set V (or

Va) for each Xa, and denote by P their union: then Hkip): HkiX, dX) —>

Hk(P, dP) is one-to-one for k = d, and thus is so in all dimensions by the

above theorem, and H°ip): H°iX) —► //°(P) is an isomorphism.

Now consider the general case.

Embed X in the cube [0, if, as at the end of the proof of the theorem,

with g = go o no, where no is the projection on [0,1]^, Xo = noiX), and

go : Xq —* M. As in the beginning of the proof of Lemma 2, go can then be

extended as a continuous map—still go—from a neighbourhood V0 of Xo to

Af. Construct now inductively a decreasing basis of neighbourhoods Wn of X

in [0, If,with Wn = Unx[0, if \7», /„ = {1, ... , k + n}, (t7„,9t/„) a man-
ifold with boundary, and a pair of subcomplexes of a subdivision of [0, 1 ]7".

Note first that using the regular neighbourhood theorem [4, Proposition 3.10],

every compact subset of a compact, triangulated manifold with boundary has

a basis of neighbourhoods that are compact manifolds with boundary and sub-

complex pairs of some subdivision of the triangulation (find first an appro-

priate neighbourhood that is a subcomplex in some subdivision, next use the

cited theorem). Thus let X„ = n„iX), with nn the projection on [0, l]7" and

obtain so inductively U„ as a neighbourhood of X„ contained in Vn with

diu, Xn) < £ for all zz in U„ , denoting by d the maximum distance, and let

F„+1 = i/„x[0,l]7-'\/v

Apply then the previous case inductively, to obtain subsets P„ of the fibered

product of / and g„ in Un x Y, with g„ : Un -» Af the composition of the pro-

jection and go , such that, for the corresponding projection pn : P„ —► U„ one

has H*ipn): H*iUn,dU„) -> H*iPn,dPn) is one-to-one and H°(j>n): H°iU„)

—» Af°(P„) is isomorphic (to construct Pn+X , use pn for / and the projection

from Un+X to U„ for g). Let P„ = P„ x [0, lfV«, p„ = pn x 1 : P„ - Wn :
by homotopy equivalence, those have still the same properties. And since

P„ and Wn decrease to P^ and X, we have indeed from [5, VI.6.6] that

H0ÍPoo): H°iX) —> H°iPoo) is an isomorphism. For a compact pair iX, dX),

with g : X —► X, apply the previous theorem with each p„ as f and go simi-

larly to the limit.

Remark. One way to reformulate the above is to define the following concept

of "homologically onto in characteristic p ":

Definition. A map /: X —» 7 (both spaces compact) is p-essential iff for every

compact pair (Z , dZ) and any map g: Z —> 7, H*iq) is one-to-one, where

q is the projection on (Z ,dZ) of the fibered product Q of f and g, with
dQ = q~xidZ).

(Ground ring is a field of characteristic p .)

Then we obtain the following properties, either straight from the definition

or from the theorem (the first of them shows that we indeed generalise exactly

the usual concept where 7 is a manifold).

(a) If /: (7, dY) -* (Af, dM) is as in the theorem, then /: 7 -► Af is
/z-essential.

(b) If /: X -> 7 is p-essential and dY ç 7, with dX = f~xidY), then

H*if): H*iY,dY) - H*iX, dX) is one-to-one.
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(c) If /: X —> 7 is zz-essential and g: Z —► 7, then the projection from

the fibered product of f and g to Z is /z-essential.

(d) A composition of p-essential maps is still so.

(e) f° g /z-essential implies / /z-essential.

In addition, the proposition suggests the conjecture that if /: X —> 7 is

p-essential, there exists a compact X0 ç X, with fo: X0 ^ Y still p-essential,

and H°ifo) isomorphic. The above proof establishes this conjecture only when

7 is a neighbourhood retract in the Hubert cube_ or slightly more generally,

under this assumption, any projection as sub(c) from the fibered product to Z

(metrisable) will have this property.

Remark. The proposition is not fully satisfactory since, for instance in the pre-

viously mentioned application, one knows X\dX is connected and one needs

a subset P with P\dP connected. (There, connexity is equivalent to variants

like: every compact subset has a compact connected neighourhood.) This we

try to improve in the following. We first prove essentially another version of

the above conjecture (Proposition 2), and Proposition 3 will give the results in

the form that is actually needed.

Proposition 2. Assume f:iY,dY)—> (Af, dM) is as in the theorem and that

the Xn are compact metric spaces, with gn : Xn —> Xn_x iand Xq = M), with

Xn connected for n > 1. Let hn = g„ o hn-X, ho = Im ■ Denote by Z„ the

fibered product of f and hn , and by pn the projection from Z„ to X„ .

Then there exist compact connected subsets P„ of Z„ , with (g„ x ly)(P„) ç

P„_i, such that, denoting by p„ the restriction of p„ to P„ , for any compact pair

iX, dX), any n, and any map g: X —> Xn, the projection qn from the fibered

product iQn,dQn) ofpn and g to iX,dX) is injective in Cech-cohomology.

Further, the choice of P„ c¿zzz be made completely independently of the X¡

and gj with i > n .

Proof. As in the proof of Proposition 1, construct first inductively an embedding

of X„ in [0, If and a decreasing basis of neighbourhoods Vj = Uln x[0, if»

of Xn in [0, if such that each iUn,dUn) is a connected manifold with

boundary, such that g„ can be viewed as a continuous map from V¿ to V'_{

for each i, and such that <p'n = Projry,    ogn is defined on U„ (with Uk = M).
zz— 1

[For this, construct first of all U[, as in Proposition 1. Once all U'n_x are

constructed (viewed as the spaces of simplicial complexes), rank first the com-

positions of gn with the coordinate mappings of Ux_x, then with those of

U2_x, etc. Denote by ¿/i¡ the corresponding sequence. Intersperse the </>¡ with

whatever sequence of continuous maps from X„ to [0, 1 ] is needed to separate

points of X„, and use the resulting sequence to define the embedding of X„

in [0, 1 f . Then extend g„ as a continuous map from [0, 1 f (as containing

Xn) to [0, If (as containing Xn-\), and let W' = g-xiV¡_x). Then select

Jn = {j'n, j'n + l, ...} , and Uln an appropriate (as in Proposition 1) neighbour-

hood of the projection of X„ on [0, If \/» such that in addition (by taking j'„

sufficiently large) one has Vn' ç W^ and that the compositions of gn with the

coordinate mappings of all Uk_x for k < i belong to N\J,j.]

Then select for each i, by induction over zz, using each time, e.g., Propo-

sition 1, a compact connected subset P^(ç Un x 7) of the fibered product of
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pln_x and <p'n , with p'n: Pn —> Uln the corresponding projection (P¿ , the fibered

product of / and Im » is not necessarily connected) such that H*ip'n) is one-

to-one.

Let Qn = P'nx[0, l]J" c 1^x7, with q'n: Q!n -> Vj the projection: H*iq'„) is

also one-to-one and Q'n compact connected. Further g„ maps Q'n into Q'n_x ■

Extract now a subsequence of i 's such that, for each zz, the Qln converge, say

to P„ , in the Hausdorff topology on compact subsets. Then P„ is a compact,

connected subset of Xn x Y, with the projection pn: P„ —> X„, such that

H*(pn) is one-to-one, and with g„xlY mapping P„ into P„_i. (In particular,

P« Q Zn , and is independent of the X¡ and the g¡ with i > n .)
Finally, given a compact pair (X, dX) and a map g: X —> Xn , apply the

theorem to the fibered product of q'n: Q'n -> V¿ and g, and go as above to the

limit over i using weak continuity.

Proposition 3. Assume f:iY,dY)—>- (Af, dM) is as in the theorem and that

iX, dX) is a compact metric pair, where each compact subset of X\dX is
contained in a compact connected subset. If g: X —> Af there exists a compact

subset P of the fibered product of f and g such that, with p as the projection
to X and dP = p~xidX), one has that

• P is the closure of P\dP and P\dP is connected;
• for every compact pair (Z, dZ), with h: Z —> X and h~xidX) C

dZ , the projection q from the fibered product iQ,dQ) of p and h to

(Z, dZ) is cohomologically one-to-one.

Proof. Let K„ be a sequence of compact, connected subsets of X\dX with

Kn ç intiKn+x) and lj„ K„ = X\dX. Let dKn = Kn\lntiK„).
Use Proposition 2, with the inclusion maps g„: Kn ç Kn+X , to construct for

each n

• first P„,„Ç{(y,x)e7x AT„|/(y) = gix)} compact connected;

• then, Vz < n, P„>; ç P„ i+1 n (7 x AT,) compact connected such that

the projections /z„,, : P„ , —> K are essential in the sense of Proposition
2.

In particular, letting iX, dX) = (AT,, 9AT,) with the identity map for g, we

obtain that q* ¡ is one-to-one, with qni: (P„,,, dPnj) -* (AT,, 9AT,) being the

projection.

Go to the limit [(P,, dP¡), q¡] along a subsequence of indices n along which,

for all i, Pni and dPn,\ converge in the Hausdorff topology. Then the P,

are compact connected, with P, ç P,+I n {(y,x) € 7 x AT,|/(y) = gix)},

QiidPi) Q dKj, and q* one-to-one.
Let P be the closure of \J¡P¡ in 7 x X, with projection p on X, and

dP = p~xidX). Clearly P is a compact subset of the fibered product of / and

g ; since (U, P,) n 9P = 0 , it follows also that P is the closure of P\dP and

that U, Pi is dense in P\dP, and hence that P\dP is connected since each P,
is so and P, ç P,+1 .

Let dXn = X\int(AT„), dP" =p'xidXn), and p": iP,dP") -* iX,dXn).
Then f)n dXn = dX, f)ndPn = dP, and, because of the excision isomorphism

(AT„ , 9AT„) C iX, dX„) and the inclusion (P„ , dP„) ç (P, dP"), the injectivity
of p* follows from that of q*.

Similarly, let dZn = dZ\Jh~xidXn),  9ß„ = q~xidZ„).   Then the dZn
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and the dQ„ decrease to dZ and dQ. Also, by Proposition 2 and excision,

let Qk „ denote the fibered product of pk t „ : Pk t„ —» X and of h : Z —> X, with

qk%n as projection to X, and dQk,n = ¿7^1n(9Z„). Then //*(¿7fc,„): H\Z , dZ„)

—> H*iQk n, dQk n) is one-to-one. The Hausdorff convergence of Pkn to

P„ , together with weak continuity, and the inclusion of UmkiQk n, dQkt„)

in (ß,9ß„), therefore, yield the injectivity of H*iqn): È*iZ, dZn)

—> H*iQ, dQn), and hence the result by a last use of weak continuity.
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