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Abstract. Let A be a semisimple right complemented Banach algebra, LA

the left regular representation of A , and M¡(A) the left multiplier algebra of

A . In this paper we are concerned with LA and its relationship to A and

M/(A). We show that LA is an annihilator algebra and that it is a closed ideal

of M¡(A). Moreover, LA and M¡{A) have the same socle. We also show that

the left multiplier algebra of a minimal closed ideal of A is topologically algebra

isomorphic to L(H), the algebra of bounded linear operators on a Hilbert space

H . Conditions are given under which LA is right complemented.

1. Introduction

Let A be a semisimple Banach algebra. In §3 we obtain some useful results

for left (right) ideals in the algebras A, LA, and M¡ÍA). For example, we

show that every closed left ideal J of A is a left ideal of LA . Moreover, if

A contains a left approximate identity then J is also a left ideal of M/ÍA). A
semisimple annihilator right complemented Banach algebra has this property.

Section 4 is devoted to the study of LA , where A is a semisimple right com-

plemented Banach algebra. We show that LA is an annihilator algebra and that

it is a closed ideal of M¡ÍA). Each minimal closed ideal of LA is topologically

algebra isomorphic to LC(2/), the algebra of all compact linear operators on

a Hilbert space H. Furthermore, LA is right complemented if and only if

x G clj^ ixLA ) for all x G LA . If LA is right complemented then it is a dual

algebra.

2. Preliminaries

Let A be a Banach algebra. For any subset S of A, lAÍS) and r¿(S) will
denote, respectively, the left and right annihilators of S in A and clAÍS) will

denote the closure of S in A. The socle of A will be denoted by SA . By an

ideal we will always mean a two-sided ideal unless otherwise specified. We call

A a modular annihilator algebra if every maximal modular left (right) ideal of

A has a nonzero right (left) annihilator. A semisimple Banach algebra with

dense socle is modular annihilator [15, Lemma 3.11, p. 41].   We call A an
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annihilator algebra if for every closed right ideal /, I ^ A, /^(2) ^ (0), and

for every closed left ideal J , J ^¿ A, rAÍJ) ^ (0). If, in addition, r^(/^(2)) = I
and lAírAÍJ)) = J, then A is called a dual algebra.

If A is a semisimple Banach algebra and K is an ideal of A , then lAÍK) =

rAÍK) [15, p. 37]. We denote the common value lAÍK) = rAÍK) by Ka.
If SA = (0) then every nonzero left (right) ideal of A contains a minimal

idempotent ([3, p.   567] or [15, p. 34]).
Let A be a semisimple Banach algebra. A linear mapping T: A —> A is

called a left multiplier if Tixy) = T(x)y for all x, y c A. Then M¡ÍA)
be the algebra of all left multipliers on A . Since every left multiplier on A is

continuous [6], M¡ÍA) is a Banach algebra under the operator bound norm. For

each a c A , let La be the operator on A given by Laix) = ax , x c A . Then

La G MiiA), for all a c A, and the mapping ¿z —► La is a norm-decreasing

algebra isomorphism of A into M¡ÍA) and embeds A as a left ideal of M¡ÍA),

[12, 14]. Let LA be the closure of {La: a c A} in M¡ÍA). We call LA the left
regular representation of A. In what follows we will identify A as a left ideal

of M¡ÍA) and as a dense left ideal of LA . In the terminology of [7], A is an

abstract Segal algebra in LA . It is shown in [14] that every subalgebra B of

M¡ÍA) such that A c B is semisimple. Thus, in particular, LA is semisimple.

(See also [12].)
All Banach algebras considered in this paper are over the complex field. When

necessary we will denote the norm in a Banach algebra A by || • |U • This

will occur when two or more Banach algebras are involved at the same time.

Otherwise the norm in A will be denoted simply as || • ||.

Let X be a Banach space. Then L(X) will denote the algebra of all bounded

linear operators on X and LC(X) the subalgebra of all compact linear opera-

tors on X. If 5 is a subspace of X and T c LÍX), then T\S will denote the
restriction of T to S.

Let A be a Banach algebra and let Lr be the set of all closed right ideals

in A. We say that A is right complemented (r.c.) if there exists a mapping

p: I —> Ip of Lr into itself (called a right complementer) having the following

properties:

(C) 2vn2t" = (0)   (2ÍGLr);

(C2) R + Rp = A  ÍRcLr);
(C3) ÍRP)P=R   ÍRcL)r);
(C4) if Rx Ç R2 then Rp2 ç Rp   ÍRX , R2 e Lr).

A semisimple r.c. Banach algebra A has dense socle [11, Lemma 5, p. 655]

and, for every x c A, x e clAixA) [I, Lemma 3, p. 39].

We put together several useful results in the following lemma.

Lemma 2.1. Let A be a semisimple Banach algebra that is a dense subalgebra

of a semisimple Banach algebra B. Then the following statements hold.

(i) If SA is a dense ideal of B then SA = Sb .
(ii) If A is an annihilator algebra then SA is a dense ideal of B.

(iii) Assume that SA is dense in A. If B is an annihilator algebra and SA

is an ideal of B, then A is an annihilator algebra.

Proof, (i) This is contained in the proof of [13, Lemma 4.1, p. 262].
(ii) This is proved in [14]. (See [14, Corollary 4.4, p. 128].)
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(iii) Suppose that B is an annihilator algebra and that SA is an ideal of

2?. Then, by [4, Corollary, p. 1036], the identity embedding of A into B is
continuous. Therefore SA is dense in B and so SA = Sb by (i). Thus the

norms || • \\A and || • \\b are equivalent on every minimal right ideal of B.

Since 2? is an annihilator algebra, [13, Corollary 6.11, p. 276] implies that

every minimal right ideal of B is a reflexive Banach space and every minimal

idempotent of B is full. The argument above shows that these properties also

hold for minimal right ideals and minimal idempotents in A. Since SA is

dense in A , we may now apply [13, Corollary 6.11, p. 276] to A to show that

A is an annihilator algebra.

3. Ideals in A, LA, and M¡ÍA)

Proposition 3.1. Let A be a semisimple Banach algebra and let B be any sub-

algebra of MiiA) such that A c B. If R is any nonzero right ideal of B then
RflA^iO).

Proof. Suppose Rf~)A = (0). Since A is a left ideal of B, we have RA c R(~)A
so that RA = (0). Thus if T e R then TLX = 0 for all x c A. Therefore
TLxiy) = Tixy) = T(x)y = 0 for all x, y G A, which shows that T(x) G
lAÍA) for all x c A . The semisimplicity of A implies that T(x) = 0 for all
x c A. Thus T = 0 and so R = (0), a contradiction. Hence R n A ^ (0).

Proposition 3.2. Let A be a semisimple Banach algebra, and let B be a subal-

gebra of MiiA) such that A c B. Then SA is a left ideal of B and SA ç Sb ■

Proof. Let e be a minimal idempotent of A. Since A is a left ideal of B,

Be c A and therefore Be = Bee c Ae . As Ae c Be, we get Be = Ae. Hence

SA c Sb .

In a similar way we can show that if LAc B then Sla ç Sb ■

Proposition 3.3. Let A be a semisimple Banach algebra, and let B be a subal-

gebra of M¡ÍA) such that A c B. If S¿ = (0) then S^ = (0) and every nonzero

right ideal of B contains a minimal idempotent of A.

Proof. Suppose that SaA = (0). If S%¿ (0) then, by Proposition 3.1, S% DA ¿
(0) and so contains a minimal idempotent e of A . Since SA c Sb , this means

that e cS^r\SB so that e = e2 = 0, a contradiction. Therefore S% = (0).

Corollary 3.4. Let A be a semisimple modular annihilator Banach algebra, and

let B be any subalgebra of M¡ÍA) such that A c B. Then every nonzero right

ideal of B contains a minimal idempotent of A .

Proof. This is an immediate consequence of Proposition 3.3 since SaA = (0) [3,

Theorem 4.2, p. 269].

Proposition 3.5. Let A be a semisimple Banach algebra. Then every closed left

ideal of A is a left ideal of LA .

Proof. Let J be a closed left ideal of A and let J = {La: A g J} . We show
that J is a left ideal of LA. Let T G LA and let {an} be a sequence in A

such that LUn —> T. Let y G /. Then Laníy) = ¿z„y G J and La„iy) —> Tiy).

As / is closed, Tiy) G /. But TLyix) = T{yx) = T(y)x = Lriy)ix), for all
x G A , implies that TLy = Lr(v). Hence TLy c J and so J is a left ideal of
LA . Identifying J with J completes the proof.
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Corollary 3.6. Let A be a semisimple Banach algebra. Then for every closed

ideal I of A, cIla(2) is a closed ideal of LA .

Proof. Let I = {La : a c 1} . In view of Proposition 3.5 we need only show that

cl^(I) is a right ideal of LA. Let T g cl^(I) and S G LA . Let {an} be a

sequence in I suchthat Lan —► T and {bn} be a sequence in A suchthat L¡,n —►

S. Since Lani,„ c I for all zz and TS = lim„^oo(La„L¿J = lim^oo Lan¿,n, we

see that TS G clz,^ (I). Identifying 2 with I completes the proof.

If A has a left approximate identity (not necessarily bounded) then Propo-

sition 3.5 takes the following more general form.

Proposition 3.7. Let A be a semisimple Banach algebra with a left approximate

identity. Then every closed left ideal of A is a left ideal of M/ÍA).

Proof. Let {uy} be a left approximate identity in A, and let J be a closed

left ideal of A. Let a c J and T G M¡ÍA). Since ||a - uya\\ -* 0 and T is
continuous, we have \\T(a) - 7*(«j,a)|| -» 0. That is, Tíu7a) = Tíuy)a -* Tía).

Since J is closed and Tiuy)a G J for all y, it follows that Tía) c J . We can

now apply the argument given in the proof of Proposition 3.5 to show that J

is a left ideal of M¡ÍA).

Corollary 3.8. Let A be a semisimple annihilator right complemented Banach

algebra. Then every closed left ideal of A is a left ideal of M¡{A).

Proof. By [12, Theorem 3.7, p. 75], A has a left approximate identity that
is bounded in the norm of LA . Application of Proposition 3.7 completes the

proof.

4. Main results

In this section we study LA where A is a semisimple r.c. Banach algebra

with a right complementor p . Since A is semisimple, so is LA .

Theorem 4.1. Let A be a semisimple right complemented Banach algebra. Then

LA is a semisimple annihilator algebra.

Proof. Let K be a minimal closed ideal of A. Then A" is a topologically

simple and semisimple r.c. Banach algebra [11, Lemma 1, p. 652]. Let e be a

minimal idempotent contained in K . Then I = Ae is a minimal left ideal of

K (and A) and so is a Hilbert space under an equivalent norm. If I is finite-

dimensional this is clear, and if I is infinite-dimensional this follows from [11,

Theorem 5, p. 652]. (See also [1, p. 40].) Denote this Hilbert space by H.
Let cp: a —» Ta be the representation of K on H corresponding to the left

regular representation of K on 2, i.e., Taix) = ax for all x c I. Then cp is

a faithful, continuous, and strictly dense representation of K on H. Hence

if K is finite-dimensional then cpiK) = LÍH). If K is infinite-dimensional

then it follows from [1, Theorem 1, p. 40] that ETa c <piK), for all orthogonal

projections E on H and all a G K. Thus, by [9, Theorem 1, p. 454], cpiK) is
a left ideal of LÍH). (See also [2, p. 391].) Since the socle of cpiK) is dense
in LC(22), the algebra of all compact linear operators on 22, it follows that

cpiK) is a dense left ideal of LC(22). Thus cpiK) is an abstract Segal algebra

in LC(22) [ 7, Proposition 1.6, p. 299]. Therefore, by [12, Proposition 2.2, p.
73], the left regular representation Lk of K is topologically algebra isomorphic
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to LC(22). For each a c K, let Lf be the left multiplication by a on K,
i.e., Lf(x) = ax for all x G K. Then LK G LK and LK = La|2v . Since
^4 = K © 2vp , there exists a constant Dk > 0 such that if x c A and we write

x = xx + x2, xx G K and x2 G 2vp , then ||x,|| < 2)jt||x|| for z = 1, 2.

For T G M/ÍK), let T' be the mapping on A given as follows: For x c A ,

x = xx+ x2, xx C K, and x2c Kp , define T'(x) = 7\xi). Then T' is linear
and ||r'|| < 2)jc||r||, where ||r|| denotes the norm of T over K. Clearly
II711 < ||T'||. Moreover, using the fact that K" = lAÍK) = rAÍK) [11, Lemma 1,
p. 652] and K®KP = A , it is easy to see that V c M¡ÍA). We have T'\K = T
and T'iKp) = (0). Also if Tx, T2c M,iK) then ÍTXT2)' = T[T'2. Hence the
mapping pK: T —> T' is a bicontinuous algebra isomorphism of M¡ÍK) into

M¡ÍA) such that PkÍLk) = La for all a G K. Thus, in particular, PkÍLk)
is a closed subalgebra of M¡ÍA). Since LK is the closure of {LK: a G K}

in M¡ÍK), it follows that PkÍLk) is the closure of {La: a c K} in M¡ÍA).
Therefore PkÍLk) c La and PkÍLk) = cIlaí{L0: a G K}). For convenience

of notation, let K = pkÍLk) . Identifying A as a subalgebra of LA , we get K =
cIl^Ä^) . By Corollary 3.6, K is a closed ideal of LA . Since K is topologically
algebra isomorphic of LC(22), K is an annihilator algebra. Clearly K is a

minimal closed ideal of LA .

Let {Ka : a G £2} be the family of all distinct minimal closed ideals in A . By
the argument above, for each a e Q., Ka = c1l^(2vq) is a minimal closed ideal

of LA and is an annihilator algebra. Since Y,a %a is dense in A , it follows

that J2aKa is dense in LA . Therefore, by [10, Theorem (2.8.29), p. 106], LA
is an annihilator algebra.

Corollary 4.2. Let A be a semisimple right complemented Banach algebra. Then

the mapping K —> cl/^(2v) is a one-to-one correspondence between the set of all

minimal closed ideals of A and the set of all minimal closed ideals of LA , and
K = cIlà ÍK) n A. Moreover, every minimal closed ideal of LA is topologically

algebra isomorphic to LC(22), the algebra of all compact linear operators on a

Hilbert space H.

Proof. We only need to verify that K = cl^A^) n A , where K is a minimal
closed ideal of A , the rest is clear from the proof above. Let K = cl¿/((2v) and

let K' = K n A . Then K' is a closed ideal of A and, therefore, is a semisimple
right complemented Banach algebra in its own right [11, Lemma 1, p. 652].

Hence if K ^ K' then there exists a nonzero closed ideal / in K' such that

K® J = K'. Thus, in particular, KJ = (0). Since K = cILaÍK) , it follows
that KJ = (0). This is impossible since J c K and K is semisimple. Hence

J = (0) and so K = K n A .

Corollary 4.3. A semisimple right complemented Banach algebra with a bounded

right approximate identity is an annihilator algebra.

Proof. Since A has a bounded right approximate identity, the norms ||-||^ and

|| • IU^ are equivalent on A . Hence the mapping a —> La takes A onto LA .

Corollary 4.4. Let A be a semisimple right complemented Banach algebra. Then

A is an annihilator algebra if and only if SA is an ideal of LA . In this case we

have SA = SLa .

Proof. This follows immediately from Lemma 2.1 and Theorem 4.1.
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Theorem 4.5. Let A be a semisimple right complemented Banach algebra and

let K be a minimal closed ideal of A . Then M¡ÍK) is topologically algebra

isomorphic to L(/2) for some Hilbert space H.

Proof. By the proof of Theorem 4.1, there exists a Hilbert space H such that

K can be continuously embedded as a dense left ideal of LC(22) and LK

is topologically algebra isomorphic to LC(22). Hence M¡ÍLk) is topologically

algebra isomorphic to M/(LC(22). In what follows we will identity K as a dense

left ideal of LC(22). Now, by [12, Proposition 3.1, p. 74], every S c M¡ÍK)
has a unique extension 5" to LK, S' G M¡ÍLk) , and ||5'|| < ||5||. Thus the
mapping S —► S' is a continuous algebra isomorphism of M¡ÍK) into M¡ÍLk) .

By [8, Lemma 2.1, p. 506], Af/(LC(2/)) is isometrically algebra isomorphic to
LÍH). Therefore, M¡ÍLk) is topologically algebra isomorphic to LÍH) and so

there exists a continuous algebra isomorphism o of M¡ÍK) into LÍH). Since

K is a left ideal of LÍH), each T c L(//) gives rise to the left multiplier

5 = Lr|2v g M¡ÍK). Hence tr is onto and so M¡ÍK) is topologically algebra

isomorphic to LÍH). Thus the socle of M¡ÍK) is mapped by a onto the socle

of LÍH), and the socle of LÍH) is equal to the socle of LC(22). As LC(22)
is topologically algebra isomorphic to LK c M¡ÍK), it follows that the socle of

M/ÍK) is equal to the socle of Lk .

Corollary 4.6. Let A be a semisimple right complemented Banach algebra and

let K be a minimal closed ideal of A . Then M¡ÍK) is topologically algebra

isomorphic to M¡ÍLk) ■ Moreover, the socle of M¡ÍK) is equal to the socle of

LK so that, in particular, LK is a closed ideal of M¡ÍK).

We will show below that also LA is an ideal of M¡ÍA). We observe that

if 2 is a closed ideal of A, then T(2) ç I for all T c M¡ÍA). In fact, 2 is
a semisimple r.c. Banach algebra in its own right [11, Lemma 1, p. 652] and

therefore has dense socle S¡. Since every minimal left ideal J contained in I

is of the form J = Ae, e2 = e , we get T(7) ç J. Thus TÍS¡) C Si and the
continuity of T implies that 7\2) ç I. Thus, in particular, T\I e M¡ÍI) for
all Te MiiA).

Let K be a minimal closed ideal of A. Since T\K c M¡ÍK) for all T c
MiiA), we see that MK = {T\K: T c M¡ÍA)} ç M¡(k) . On the other hand,
since for each T G M,ÍK), T' = pKÍT) c M,ÍA) and T = T'\K (see the
proof of Theorem 4.1), we have M/(/v) ç Mk ■ Hence Mk = M¡ÍK). We
know that pKÍM¡ÍK)) is a closed subalgebra of M¡ÍA). We claim that it
is also an ideal of M,ÍA). Note that pKíM¡iK)) = {T':T c M¡ÍK)}. Let
T G M/ÍK), S G MiiA), and x c A. Write x = xx + x2 with xx c K and
x2cKp. Then (7"S)(x) = r(S(*i + x2)) = T'iSixx) + S{x2)) = TiSixx)) =
iT{S\K))ixi) = ÍTÍS\K))'ix). Hence T'S = (T(5|2í))' G pKÍM,ÍK)). Like-
wise ST' G PkÍMiÍK)) . This verifies our claim.

Theorem 4.7. Let A be a semisimple right complemented Banach algebra. Then

LA is a closed ideal of M¡ÍA).

Proof. To simplify notation, let B = M¡ÍA). Let AL = {La: a G A} and let
e be a minimal idempotent in B. By Corollary 3.4, eB contains a minimal

idempotent / of AL . We have f = Lg , for some minimal idempotent g G A .

Since Sla Q Sb , it follows that / is also a minimal idempotent of B and

eB = fB. Let 2 = clBÍBeB) = clfi(2//2f) and K = clAÍAgA). Then 2 (resp.
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K) is a minimal closed ideal of B (resp. A). Since f G pKÍMiiK)) n 2,
it follows that PkÍMiÍK)) n 2 ^¿ (0) and therefore, by the minimality of 2,
PkÍMiÍK)) n 2 = I. This shows that e G pKÍM,ÍK)). Now L* c M/fÄ") and,
by Corollary 4.6, SLlc = Sm,(k) ■ Hence e G PkÍLk) c La and so Be c S/,^ .

Thus Sb Q Sla ■ As Sla c Sb , we obtain S^ = S^ . Since SLa is dense in LA
and 5^ = Sß is an ideal of B , it follows that LA is a closed ideal of B .

Corollary 4.8. Let A be a semisimple right complemented Banach algebra. Then

Sla = Sm,{a) ■

Corollary 4.9. Let A be a semisimple right complemented Banach algebra. Then

A is an annihilator algebra if and only if SA = Sm,(a) ■

Proof. This follows immediately from Corollaries 4.4 and 4.8.

Theorem 4.10. Let A be a semisimple right complemented Banach algebra.

Then LA is right complemented if and only if x c cltAixLA) for all x G LA.

Proof. To simplify notation, let B = LA, and let p be the right complementer

on A. If B is right complemented then, by [1, Lemma 3, p. 39], x c clßixB)

for all x c B ; i.e., B has approximate right units [7, p. 299]. Conversely

suppose that B has approximate right units. Let Lr (Lr) be the set of all

closed right ideals in A(B). Since A also has approximate right units and

A is an abstract Segal algebra in B, by [7, Theorem 2.3, 299], the mapping

2 —> els(2) is a bijection of Lr onto Lr and clB(2) n A = I. For R G Lr, let
Ri = clßi[R n A]p). We claim that q is a right complementer on B. To see

that (Ci) is satisfied, let 2 = R n Rq . Then In A is a closed right ideal of A ,
InA c RnA , and IDA c RqC\A = [RnAf . Hence IílA c ÍRnA)n[Rr\Ay =
(0). Therefore 2 = (0). Property (C3) also holds for q since

ÍR")" = cla([clB([2i n Af) n AY) = clBii[R n Af)p)

= clBiRnA) = R.

Moreover, if Rx , R2 g Lr, Rx ç R2, then R\ ç R\ since Rx CiA ç R2r\A and
[R2f\A]p c [Rx r\A]p . Therefore q satisfies (C4). Since the norm || • ||B in B

has the property that ||a||Ä = sup{||ax||^ : \\x\\A < 1, x c A} for all ¿z G A, we
can apply verbatim the argument in the proof of [13, Theorem 5.2(i), p. 265] to

show that q satisfies (C2). Therefore q is a right complementer on B = LA

and this completes the proof.

Theorem 4.11. Let A be a semisimple right complemented Banach algebra. If

LA is right complemented then LA is a dual algebra.

Proof. Suppose that LA is right complemented. Then x G cIlaíxLa) for all

x G LA . Since LA is an annihilator algebra, by [12, Theorem 3.6, p. 75], LA

has a quasi-bounded left approximate identity so that x G cl^(L^x) for all

x G LA . Thus x G cliAixLA) n cILaÍLax) for all x c LA. Therefore, by the

proof of [10, Theorem (2.8.27), p. 104], LA is dual.
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