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ABSTRACT. Let A4 be a semisimple right complemented Banach algebra, L,
the left regular representation of A4, and M;(A) the left multiplier algebra of
A . In this paper we are concerned with L, and its relationship to 4 and
M;(A) . We show that L, is an annihilator algebra and that it is a closed ideal
of M;(A). Moreover, L, and M;(A) have the same socle. We also show that
the left multiplier algebra of a minimal closed ideal of A is topologically algebra
isomorphic to L(H), the algebra of bounded linear operators on a Hilbert space
H . Conditions are given under which L, is right complemented.

1. INTRODUCTION

Let A be a semisimple Banach algebra. In §3 we obtain some useful results
for left (right) ideals in the algebras 4, L,, and M;(A). For example, we
show that every closed left ideal J of A is a left ideal of L,. Moreover, if
A contains a left approximate identity then J is also a left ideal of M;(4). A
semisimple annihilator right complemented Banach algebra has this property.
Section 4 is devoted to the study of L,, where A4 is a semisimple right com-
plemented Banach algebra. We show that L, is an annihilator algebra and that
it is a closed ideal of M;(A4). Each minimal closed ideal of L, is topologically
algebra isomorphic to LC(H), the algebra of all compact linear operators on
a Hilbert space H. Furthermore, L, is right complemented if and only if
x €cly,(xLy) forall x €e Ly. If L, is right complemented then it is a dual
algebra.

2. PRELIMINARIES

Let A be a Banach algebra. For any subset S of A4, [4(S) and r4(S) will
denote, respectively, the left and right annihilators of S in 4 and cl,(S) will
denote the closure of S in 4. The socle of 4 will be denoted by S,. By an
ideal we will always mean a two-sided ideal unless otherwise specified. We call
A a modular annihilator algebra if every maximal modular left (right) ideal of
A has a nonzero right (left) annihilator. A semisimple Banach algebra with
dense socle is modular annihilator [15, Lemma 3.11, p. 41]. We call 4 an
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annihilator algebra if for every closed right ideal I, I # A, I4(I) # (0), and
for every closed leftideal J, J # A, ry(J) # (0). If, in addition, r (l4(I)) =1
and [ (rq(J)) = J, then A is called a dual algebra.

If A is a semisimple Banach algebra and K is an ideal of 4, then /4(K) =
rqa(K) [15, p. 37]. We denote the common value [4(K) = ry(K) by K°.
If §9 = (0) then every nonzero left (right) ideal of 4 contains a minimal
idempotent ([3, p. 567] or [15, p. 34]).

Let A be a semisimple Banach algebra. A linear mapping 7: A — A is
called a left multiplier if T(xy) = T(x)y for all x, y € A. Then M;(A)
be the algebra of all left multipliers on 4. Since every left multiplier on 4 is
continuous [6], M;(A4) is a Banach algebra under the operator bound norm. For
each a € A, let L, be the operator on A given by L,(x) =ax, x € A. Then
L, € M;(A), for all a € A, and the mapping a — L, is a norm-decreasing
algebra isomorphism of A4 into M;(4) and embeds A as a left ideal of M;(A),
[12, 14]. Let L, be the closure of {L,: a € A} in M;(A). We call L, the left
regular representation of A. In what follows we will identify 4 as a left ideal
of M;(A) and as a dense left ideal of L,. In the terminology of [7], A is an
abstract Segal algebra in L, . It is shown in [14] that every subalgebra B of
M;(A) such that 4 C B is semisimple. Thus, in particular, L, is semisimple.
(See also [12].)

All Banach algebras considered in this paper are over the complex field. When
necessary we will denote the norm in a Banach algebra 4 by | - ||4. This
will occur when two or more Banach algebras are involved at the same time.
Otherwise the norm in A will be denoted simply as | - || .

Let X be a Banach space. Then L(X) will denote the algebra of all bounded
linear operators on X and LC(X) the subalgebra of all compact linear opera-
torson X . If S is a subspace of X and 7 € L(X), then T|S will denote the
restriction of T to S.

Let 4 be a Banach algebra and let L, be the set of all closed right ideals
in A. We say that A4 is right complemented (r.c.) if there exists a mapping
p: I — IP of L, into itself (called a right complementor) having the following
properties:

(C1) RNR?=(0) (ReLy);

(C;) R+RP=4 (RelL,);

(C3) (R?P =R (ReL)r);

(C4) if Ry C Ry then ROCRY (R,Ry€L,).

A semisimple r.c. Banach algebra 4 has dense socle [11, Lemma 5, p. 655]
and, for every x € A, x € cly(xA4) [1, Lemma 3, p. 39].

We put together several useful results in the following lemma.

Lemma 2.1. Let A be a semisimple Banach algebra that is a dense subalgebra
of a semisimple Banach algebra B . Then the following statements hold.
(i) If S4 is a dense ideal of B then S, = Sp.
(ii) If A is an annihilator algebra then S, is a dense ideal of B.
(iii) Assume that S, is dense in A. If B is an annihilator algebra and S 4
is an ideal of B, then A is an annihilator algebra.

Proof. (i) This is contained in the proof of [13, Lemma 4.1, p. 262].
(ii) This is proved in [14]. (See [14, Corollary 4.4, p. 128].)
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(ii1) Suppose that B is an annihilator algebra and that S5, is an ideal of
B. Then, by [4, Corollary, p. 1036], the identity embedding of A into B is
continuous. Therefore S, is dense in B and so S4 = Sz by (i). Thus the
norms | -|l4 and || - ||p are equivalent on every minimal right ideal of B.
Since B is an annihilator algebra, [13, Corollary 6.11, p. 276] implies that
every minimal right ideal of B is a reflexive Banach space and every minimal
idempotent of B is full. The argument above shows that these properties also
hold for minimal right ideals and minimal idempotents in 4. Since S, is
dense in 4, we may now apply [13, Corollary 6.11, p. 276] to 4 to show that
A is an annihilator algebra.

3. IDEALS IN A, L4, AND M;(A)

Proposition 3.1. Let A be a semisimple Banach algebra and let B be any sub-
algebra of M;(A) such that A C B. If R is any nonzero right ideal of B then
RN A#(0).

Proof. Suppose RNA = (0). Since A is a left ideal of B, we have RA C RNA
so that R4 = (0). Thus if T € R then TL, = 0 for all x € 4. Therefore
TL.(y) =T(xy) =T(x)y =0 forall x, y € A4, which shows that T(x) €
I4(A) for all x € A. The semisimplicity of 4 implies that 7(x) = 0 for all
x€A. Thus T=0 and so R =(0), a contradiction. Hence RN 4 # (0).

Proposition 3.2. Let A be a semisimple Banach algebra, and let B be a subal-
gebra of M;(A) such that AC B. Then S, is a left ideal of B and S, C Sg.

Proof. Let e be a minimal idempotent of 4. Since A is a left ideal of B,
Be C A and therefore Be = Bee C Ae. As Ae C Be, we get Be = Ae. Hence
S4CSk.

In a similar way we can show that if L, C B then S;, C Sp.

Proposition 3.3. Let A be a semisimple Banach algebra, and let B be a subal-
gebra of Mj(A) suchthat AC B. If S§ = (0) then S§ = (0) and every nonzero
right ideal of B contains a minimal idempotent of A.

Proof. Suppose that S§§ = (0). If S§ # (0) then, by Proposition 3.1, S§NA4 #
(0) and so contains a minimal idempotent e of 4. Since S C Sp, this means
that e € S§ NSp so that e = e? =0, a contradiction. Therefore S% =1(0).

Corollary 3.4. Let A be a semisimple modular annihilator Banach algebra, and
let B be any subalgebra of M;(A) such that A C B. Then every nonzero right
ideal of B contains a minimal idempotent of A.

Proof. This is an immediate consequence of Proposition 3.3 since S = (0) [3,
Theorem 4.2, p. 269].

Proposition 3.5. Let A be a semisimple Banach algebra. Then every closed left
ideal of A is a left ideal of L.

Proof. Let J be a closed left ideal of 4 and let J = {L,: 4 € J}. We show
that J is a left ideal of L,. Let T € L, and let {a,} be a sequence in A4
such that L, — T. Let ye J. Then L, (y)=a,y € J and L, (y) — T(y).
As J isclosed, T(y) € J. But TL,(x) = T(yx) = T(y)x = L1(,)(x), for all
x € A, implies that TL, = Lr(,). Hence TL, € J and so J is a left ideal of
L, . Identifying J with J completes the proof.




400 B. J. TOMIUK

Corollary 3.6. Let A be a semisimple Banach algebra. Then for every closed
ideal 1 of A, clp,(I) is a closed ideal of L, .

Proof. Let I ={L,: a € I} . In view of Proposition 3.5 we need only show that
cly,(I) is a right ideal of L. Let T € cl;,(I) and S € L4. Let {a,} bea
sequence in / suchthat L,, — T and {b,} beasequencein 4 suchthat L, —
S. Since L, €1 forall n and TS = lim,_o(Lg,Lp,) = lim,oc L, p, , We
see that 7'S € clz,(I). Identifying I with I completes the proof.

If A has a left approximate identity (not necessarily bounded) then Propo-
sition 3.5 takes the following more general form.

Proposition 3.7. Let A be a semisimple Banach algebra with a left approximate
identity. Then every closed left ideal of A is a left ideal of M;(A).

Proof. Let {u,} be a left approximate identity in 4, and let J be a closed
left ideal of 4. Let a € J and T € M;(A4). Since |la—u,a| — 0 and T is
continuous, we have ||T(a)— T (u,a)|| — 0. Thatis, T(u,a) = T(u,)a — T(a).
Since J is closed and T'(u,)a € J for all y, it follows that T(a) € J. We can
now apply the argument given in the proof of Proposition 3.5 to show that J
is a left ideal of M;(A).

Corollary 3.8. Let A be a semisimple annihilator right complemented Banach
algebra. Then every closed left ideal of A is a left ideal of M;(A).

Proof. By [12, Theorem 3.7, p. 75], A has a left approximate identity that
is bounded in the norm of L,. Application of Proposition 3.7 completes the
proof.

4. MAIN RESULTS

In this section we study L, where A4 is a semisimple r.c. Banach algebra
with a right complementor p. Since A4 is semisimple, sois L.

Theorem 4.1. Let A be a semisimple right complemented Banach algebra. Then
L, is a semisimple annihilator algebra.

Proof. Let K be a minimal closed ideal of 4. Then K is a topologically
simple and semisimple r.c. Banach algebra [11, Lemma 1, p. 652]. Let ¢ be a
minimal idempotent contained in K. Then I = Ae is a minimal left ideal of
K (and A) and so is a Hilbert space under an equivalent norm. If 7 is finite-
dimensional this is clear, and if I is infinite-dimensional this follows from [11,
Theorem 5, p. 652]. (See also [1, p. 40].) Denote this Hilbert space by H.
Let ¢: a — T, be the representation of K on H corresponding to the left
regular representation of K on I, i.e., T,(x) =ax forall x € I. Then ¢ is
a faithful, continuous, and strictly dense representation of K on H. Hence
if K is finite-dimensional then ¢(K) = L(H). If K is infinite-dimensional
then it follows from [1, Theorem 1, p. 40] that ET, € ¢(K), for all orthogonal
projections E on H and all a € K. Thus, by [9, Theorem 1, p. 454], ¢(K) is
a left ideal of L(H). (See also [2, p. 391].) Since the socle of ¢(K) is dense
in LC(H), the algebra of all compact linear operators on H, it follows that
@(K) is a dense left ideal of LC(H). Thus ¢(K) is an abstract Segal algebra
in LC(H) [ 7, Proposition 1.6, p. 299]. Therefore, by [12, Proposition 2.2, p.
73], the left regular representation Lg of K is topologically algebra isomorphic
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to LC(H). For each a € K, let LX be the left multiplication by a on K,
i.e.,, LX(x) = ax forall x € K. Then LX € Ly and LX = L,|K. Since
A = K & KP, there exists a constant Dg > 0 such that if x € 4 and we write
X=x1+x2, X €K and x; € K?, then ||x;|| < Dgl|x|| for i=1, 2.

For T € M;(K), let T’ be the mapping on A given as follows: For x € 4,
X=X+x2, X1 € K,and x; € K?, define T'(x) = T(x;). Then T’ is linear
and ||T'|| < Dk||T||, where ||T|| denotes the norm of T over K. Clearly
IT)| < ||IT’|| . Moreover, using the fact that K? = [,(K) = ry(K) [11, Lemma 1,
p. 652]and K@ K? = A, it is easy to see that 7' € M;(4). Wehave T'|K =T
and T'(K?) = (0). Also if T}, T; € M;(K) then (T;T;)' = T|T,. Hence the
mapping px: T — T’ is a bicontinuous algebra isomorphism of M;(K) into
M;(A) such that px(LX) = L, for all a € K. Thus, in particular, pgx(Lg)
is a closed subalgebra of M;(4). Since Lg is the closure of {LX:a € K}
in M;(K), it follows that pg(Lg) is the closure of {L,: a € K} in M;(A).
Therefore pgx(Lgx) C Ly and pg(Lk) = clp,({Ls: a € K}). For convenience
of notation, let K = px(Lg). Identifying A as a subalgebra of L,, we get K =
cl,(K). By Corollary 3.6, K is a closed ideal of L,. Since K is topologically
algebra isomorphic of LC(H), K is an annihilator algebra. Clearly K is a
minimal closed ideal of L.

Let {K,: a € Q} be the family of all distinct minimal closed ideals in 4. By
the argument above, for each a € Q, K, =cl;,(K,) is a minimal closed ideal
of L, and is an annihilator algebra. Since ) K, is dense in A4, it follows
that ) K, is dense in L, . Therefore, by [10, Theorem (2.8.29), p. 106], L4
is an annihilator algebra.

Corollary 4.2. Let A be a semisimple right complemented Banach algebra. Then
the mapping K — cly ,(K) is a one-to-one correspondence between the set of all
minimal closed ideals of A and the set of all minimal closed ideals of L,, and
K =cly,(K)N A. Moreover, every minimal closed ideal of L, is topologically
algebra isomorphic to LC(H), the algebra of all compact linear operators on a
Hilbert space H .

Proof. We only need to verify that K = cl;,(K) N A, where K is a minimal
closed ideal of A, the rest is clear from the proof above. Let K = cl;,(K) and
let K =KnA. Then K’ is a closed ideal of 4 and, therefore, is a semisimple
right complemented Banach algebra in its own right [11, Lemma 1, p. 652].
Hence if K # K’ then there exists a nonzero closed ideal J in K’ such that
K @ J = K'. Thus, in particular, KJ = (0). Since K = cl; (K), it follows
that KJ = (0). This is impossible since J C K and K is semisimple. Hence
J=(0) andso K=Kn4.

Corollary 4.3. A semisimple right complemented Banach algebra with a bounded
right approximate identity is an annihilator algebra.

Proof. Since A has a bounded right approximate identity, the norms ||-||4 and
Il - ||z, are equivalent on 4. Hence the mapping a — L, takes 4 onto L,.

Corollary 4.4. Let A be a semisimple right complemented Banach algebra. Then
A is an annihilator algebra if and only if S, is an ideal of L. In this case we
have S4 =S, .

Proof. This follows immediately from Lemma 2.1 and Theorem 4.1.
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Theorem 4.5. Let A be a semisimple right complemented Banach algebra and
let K be a minimal closed ideal of A. Then M;(K) is topologically algebra
isomorphic to L(H) for some Hilbert space H .

Proof. By the proof of Theorem 4.1, there exists a Hilbert space H such that
K can be continuously embedded as a dense left ideal of LC(H) and Lg
is topologically algebra isomorphic to LC(H). Hence M;(Lg) is topologically
algebra isomorphic to M;(LC(H) . In what follows we will identity K as a dense
left ideal of LC(H). Now, by [12, Proposition 3.1, p. 74], every S € M;(K)
has a unique extension S’ to Lg, S’ € M;(Lg), and ||S’|| < ||S]|. Thus the
mapping S — S’ is a continuous algebra isomorphism of M;(K) into M;(Lg).
By [8, Lemma 2.1, p. 506], M;(LC(H)) is isometrically algebra isomorphic to
L(H). Therefore, M;(Lg) is topologically algebra isomorphic to L(H) and so
there exists a continuous algebra isomorphism ¢ of M;(K) into L(H). Since
K is a left ideal of L(H), each T € L(H) gives rise to the left multiplier
S = Lr|K € M;(K). Hence o is onto and so M;(K) is topologically algebra
isomorphic to L(H). Thus the socle of M;(K) is mapped by ¢ onto the socle
of L(H), and the socle of L(H) is equal to the socle of LC(H). As LC(H)
is topologically algebra isomorphic to Lx C M;(K), it follows that the socle of
M;(K) is equal to the socle of Lg .

Corollary 4.6. Let A be a semisimple right complemented Banach algebra and
let K be a minimal closed ideal of A. Then M;(K) is topologically algebra
isomorphic to M;(Lk). Moreover, the socle of M;(K) is equal to the socle of
Lk so that, in particular, Lk is a closed ideal of M;(K).

We will show below that also L, is an ideal of AM;(A4). We observe that
if I is a closed ideal of 4, then T(I) C I for all T € M;(A). In fact, I is
a semisimple r.c. Banach algebra in its own right [11, Lemma 1, p. 652] and
therefore has dense socle S;. Since every minimal left ideal J contained in I
is of the form J = Ade, e? =e, we get T(J) C J. Thus T(S;) CS; and the
continuity of T implies that 7°(/) C I. Thus, in particular, T|I € M;(I) for
all T e M(A).

Let K be a minimal closed ideal of 4. Since T|K € M;(K) forall T €
M,;(A), we see that Mg = {T|K: T € M;(A)} C M;(K). On the other hand,
since for each T € M;(K), T' = px(T) € Mj(A) and T = T'|K (see the
proof of Theorem 4.1), we have M;(K) C Mg . Hence My = M;(K). We
know that px(M;(K)) is a closed subalgebra of M;(4). We claim that it
is also an ideal of M;(4). Note that px(M;(K)) = {T': T € M;(K)}. Let
Te M(K), Se M(A),and x € A. Write x = x| + x, with x; € K and
X2 € KP. Then (T'S)(x) = T'(S(x;1 + x2)) = T'(S(x1) + S(x2)) = T(S(x1)) =
(T(SIK))(x1) = (T(S|K))'(x). Hence T'S = (T(S|K))" € px(M(K)). Like-
wise ST’ € px(M;(K)). This verifies our claim.

Theorem 4.7. Let A be a semisimple right complemented Banach algebra. Then
L, is a closed ideal of M;(A).

Proof. To simplify notation, let B = M;(A4). Let A; = {L,: a € A} and let
e be a minimal idempotent in B. By Corollary 3.4, ¢B contains a minimal
idempotent f of 4;. We have f = L,, for some minimal idempotent g € 4.
Since Sy, C Sp, it follows that f is also a minimal idempotent of B and
eB = fB. Let I =clg(BeB) =clg(BfB) and K = cly(AgA). Then I (resp.
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K) is a minimal closed ideal of B (resp. 4). Since f € px(M(K))NnI,
it follows that px(M;(K)) NI # (0) and therefore, by the minimality of 7,
px(Mi(K))N I =1I. This shows that e € px(M;(K)). Now Lg C M;(K) and,
by Corollary 4.6, S, = Su,x)- Hence e € px(Lg) C Ly and so Be C Sy, .
Thus Sp C S;,. As Sz, C Sp, we obtain Sgp =Sy, . Since S;, is densein L,
and Sy, = Sp is an ideal of B, it follows that L, is a closed ideal of B.

Corollary 4.8. Let A be a semisimple right complemented Banach algebra. Then
SLy = Sumy(a) -

Corollary 4.9. Let A be a semisimple right complemented Banach algebra. Then
A is an annihilator algebra if and only if S4 = Sp,4) -

Proof. This follows immediately from Corollaries 4.4 and 4.8.

Theorem 4.10. Let A be a semisimple right complemented Banach algebra.
Then L, is right complemented if and only if x € clp,(xLy) forall x € L,.

Proof. To simplify notation, let B = L, and let p be the right complementor
on A. If B is right complemented then, by [1, Lemma 3, p. 39], x € clg(xB)
for all x € B; i.e., B has approximate right units [7, p. 299]. Conversely
suppose that B has approximate right units. Let L, (L,) be the set of all
closed right ideals in A(B). Since A4 also has approximate right units and
A is an abstract Segal algebra in B, by [7, Theorem 2.3, 299], the mapping
I — clg(I) is a bijection of L, onto L, and clg(/)NA=1. For ReL,, let
R? = clg([RN A)P). We claim that g is a right complementor on B. To see
that (C;) is satisfied, let / = RN RY. Then I N A is a closed right ideal of A4,
INACc RNnA,and INAC RINA =[RNAJ . Hence INA C (RNA)N[RNAJ =
(0). Therefore I = (0). Property (C;) also holds for g since

(R1)? = clp([clpg([RN A)) N AF) = clp(([RN AP)")
= clg(RNA) =R.

Moreover, if Ry, R, € L,, R; C Ry, then R} C R} since RiNA4 C RyNA and
[R;N AP C[R;NA) . Therefore g satisfies (C4). Since the norm || -||p in B
has the property that |a||p = sup{|lax|.s: ||x]|l4 <1, x € A} forall a€ 4, we
can apply verbatim the argument in the proof of [13, Theorem 5.2(i), p. 265] to
show that g satisfies (C,). Therefore g is a right complementor on B = L,
and this completes the proof.

Theorem 4.11. Let A be a semisimple right complemented Banach algebra. If
L, is right complemented then L, is a dual algebra.

Proof. Suppose that L, is right complemented. Then x € clz,(xL,) for all
x € Ly. Since L, is an annihilator algebra, by [12, Theorem 3.6, p. 75], L4
has a quasi-bounded left approximate identity so that x € clp,(L4x) for all
x € Ly. Thus x € cly,(xLy) Ncly,(Lyx) for all x € L. Therefore, by the
proof of [10, Theorem (2.8.27), p. 104], L, is dual.
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