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Abstract. Let x and y be two points in a metric space (X, p). The equidis-

tant set or midset M(x, y) of x and y is the set {p e X\p(x, p) = p(y, p)} .

If the midset of each pair of points of X consists of a finite number of points

then the metric space X is said to have the finite midset property, and if the

midsets of pairs of points in X are pairwise homeomorphic then X is said to

have uniform midsets. Generalizing earlier results, the main theorem states that

no continuum in the Euclidean plane can have both finite and uniform midsets

if it contains a triod. It follows that a plane continuum with finite, uniform

midsets must be either an arc or a simple closed curve.

1. Introduction

For each positive integer zz, a metric space X is said to have the n-point

midset property, abbreviated as the zz-MP, if for every two points x and y in

X the set Mix, y) of all points of X equidistant from x and y consists of

n points. Thus a space with finite, uniform midsets has the zz-MP for some
positive integer zz. A circle or, more generally, any simple closed curve in the

Euclidean plane E2 that bounds a convex disk has the 2-MP. This 2-MP is
more commonly called the double midset property and is denoted by DMP. In
[4] it was proved that a continuum in the plane with the DMP must be a simple

closed curve, and it has been conjectured [8] that this result is true without
restriction to the Euclidean plane E2. It was also conjectured in [8] that no
continuum has the 3-MP, a property previously called the triple midset property

(TMP), and this was also verified for continua in E2 [5, 6]. Theorem 3.1 of this

paper states that no continuum in E2 that contains a triod can have the zz-MP

for any positive integer zz. The special cases zz = 2 and zz = 3 of Theorem

3.1 include Theorem 2.1 of [6] and Theorem 2 of [4], respectively. In another
paper [7], we show that no arc or simple closed curve in E2 can have the zz-MP

for zz > 2.
No examples have been found of continua with the zz-MP, except for the

cases where n £ {1, 2} . Theorem 3.2 states that the only plane continua with
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the zz-MP are arcs and simple closed curves. From Theorem 3.2 and [7] it

follows that no plane continuum can have the zz-MP for zz > 2. However, a

theorem of Bagemihl and Erdös [ 1 ] states that, given zz, there exists a subset of

E2 with the property that its intersection with every line consists of zz points.

Such a set has the zz-MP. Mazurkiewicz [9] used the Axiom of Choice to prove

the existence of a subset of E2 that meets every line in exactly two points.

Larman [3] showed that an iv-set E2 that meets every line at least once must

meet some line at least three times.

Midsets have also been called bisectors [2] or equidistant sets [11, 12], but

for subsets of Euclidean spaces it is helpful to distinguish between bisectors

and midsets. If a and b are two points of a subset X of E2, the bisector
2?(¿z, b) of a and b is the straight line that bisects and is perpendicular to the

line segment joining a and b , while the midset Mia, b) is the intersection of

Bia, b) with X. Thus, E2 - Bia, b) has two components; the one containing

the point a is called the aside of ß(a, b).

2. Basic lemmas and definitions

A continuum is a compact, connected metric space containing more than one

point, and a p/¿zzz¿? continuum is a continuum that lies in the Euclidean plane

E2 and has the subspace topology. The standard Euclidean metric p is used
for E2. An arc is a homeomorphic image of the closed interval [0, 1 ] on the

real line, while a triod is any homeomorphic image of the union of the closed

intervals [(-1, 0), (1, 0)] and [(0, 0), (0, 1)] in E2. The image v of (0, 0)
in a triod T is called the vertex of T, while the closures of the components

of T - {v } are called the legs of T. A simple closed curve is a homeomorphic

image of a circle in E2, and a triodic continuum is a continuum containing a

triod.

Lemma 2.1. A continuum with the n-MP is locally connected, path connected,

and locally path connected.

An indirect proof that a continuum with a finite midset property is locally

connected is easily obtained from [10, Theorem 11, p. 90]. For the remainder

of Lemma 2.1 see [13, Theorem 31.4].
A connected subset X of E2 is said to cross a line (or simple closed curve)

L at a point m £ L if there are arcs A' and A" in X suchthat A'nA" = {m}

and A' - {m} and A" - {m} lie on opposite sides of L. The set X is said to

bounce off a line (or simple closed curve) L at a point m e L if there is an arc

A in X such that zrz lies in the interior of A, AD L = {m} , and A - {m}

lies in a single component of E2 - L. Also X is said to bounce off a bisector

Bia, b) at m to the aside of Bia, b) if there is an arc A in X such that

m £ Bia, b) n Int^l and A - {m} lies on the ¿z-side of Bia, b). An arc A is

said to hang to the side S of a line L at a point v £ L if v is an end point of
A and iA-{v})cS.

A point t in a continuum X is a bounce point for X if there exist points

x, and y i in X such that t £ Bixt, yt) and X bounces off B(x<, yt) at t. A

point e of X is called an end point of X if no arc in X has ¿? in its interior,
and a line L is said to be a bisector for X if there exist points x and y of X

such that L = 5(a, b).
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Lemma 2.2. If a continuum X in E2 has the n-MP and X contains at most a

finite number of points that are vertices of a triod in X, then the set of bounce

points for X is countable.

Proof of Lemma 2.2. Suppose the set W of bounce points for X is uncount-

able. For each x £ W it follows from the zz-MP that there is an interval /(x)

in a bisector for X such that x is the midpoint of /(x) and /(i)nl = {x}.

There exists a positive integer m such that the set Wm of elements x of W

with corresponding interval l{x) of length at least 1/zzz is infinite, and there

must be a sequence {x¡} of points in Wn such that the corresponding sequence

{/(x,)} of intervals converges to a continuum H [10, Theorems 58 and 59].

Then H is a line segment whose midpoint p lies in X. Let A be a neighbor-

hood of p such that N n X is path connected (Lemma 2.1) and N contains

no end points of any 7(x,-), and let A be an arc in X n N from a point Xj

to p . Then for infinitely many k , A must cross /(x¿.) at the point xk . Be-

cause xk £ Wm , there exists an arc Bk in X such that Bk bounces off the line

through /(.¡c*) at xk . Then AL)Bk contains a triod. Since X contains at most
a finite number of vertices of triods that lie in X, this contradiction establishes

Lemma 2.2.

If X is a set with the zz-MP and {x, y} c X, then a point c in XnBix, y)

is called a bad point of 2?(x, y) if no arc in X crosses 2?(x, y) at c. If v £ X,

ßiv) is defined as the collection of all bisectors Bix, y) such that v £ Bix, y),
{x, y} c X, and some point of Mix, y) - {v} is a bad point of Bix, y).

Frequently used in the sequel, Lemma 2.3 gives three conditions each of

which implies the existence of bisectors containing bad points. Proofs for the

three parts are easily supplied based on the geometrical fact that if zz - 1 arcs in
the continuum X cross a bisector Bia, b) at each of zz-1 points in Mia, b)-

{v} , which happens if Bia, b) $ ßiv), and X contains an arc that bounces
off Bia, b) at v, then, by moving one of either a or b slightly within X,

one can produce another bisector that intersects X in at least n + 1 points,

including two points near v . Of course this would contradict X having the

zz-MP.

Lemma 2.3. If X isa continuum in E2, X has the n-MP, C is a circle centered

at v , y is a component of E2 - C, a and b are points of C n X, and X

contains an arc A that bounces off Bia, b) at the point v , then any one of the

three following conditions implies Bia, b) £ ßiv) :

( 1 ) a and b are both limit points of 'V CiX;
(2) a is a limit point of both X n Int C ¿zzz¿f X n Ext C ; or
(3) A bounces off Bia, b) to the aside of Bia, b) at v, and either a is

a limit point of X n Ext C or b is a limit point of X n Int C.

While Lemma 2.3 is used to produce bisectors with bad points, Lemma 2.4

limits the number of such bisectors.

Lemma 2.4. If X is a locally path connected subset of E2 with the n-MP for

some positive integer n and v £ X, then ßiv) is a countable collection of lines.

Proofof Lemma 2.4. Suppose ßiv) is uncountable. Let ßiv) = ß. For each

B £ ß, there exist a point x and an interval IÇx) c B such that x is the

midpoint of 7(x), x is a bad point of B, In 7(x) = {x}, and r/n. Then
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/?' = {7(x)|5 £ ß} is an uncountable collection of pairwise disjoint intervals,

so, as in the proof of Lemma 2.2, there exists an interval /(x*) £ ß' such that

some arc in X crosses /(x^) at xk. This contradicts the choice of xk as a
bad point of the bisector in ß containing 7(x¿), and Lemma 2.4 follows.

Lemma 2.5. If X is a continuum in E2 that contains an most a finite number

of points that are the vertex of a triod in X, e is an end point of an arc L in X
such that e is not a limit point of X - L, C is a circle centered at e, p and
q are points of CC\X, N is a neighborhood of Bip, q) such that N contains
no vertex of a triod in X, e is the only end point of X or of L that lies in N,

and either one of the following two properties holds:

( 1 ) p and q are limit points ofV\~\X for some component W of E2-C ;

(2) q is a limit point of W n X for each component "V of E2 - C ;

then X cannot have the n-MP for any positive integer n.

Proof of Lemma 2.5. Suppose X has the zz-MP for some positive integer zz

and the first condition in Lemma 2.5 holds. We may assume L - {e} lies on

the p-side of Bip, q). Since B(j), q) contains no end point of X, except for

e, and N contains no vertex of a triod in X, each point of Mip, q) - {e} is

either a bounce point of X or a point where an arc in X crosses 5(p, q)—no

point of Mip, q) can be both. For each t £ Mip, q) — {e}, let At and Bt be
arcs in N n X such that Atr\Bt = {t} and iAt U Bt) n 5(p, q) = {t} . Then
A, U Bt either bounces off or crosses 5(p, ¿7) at t. Let F = {H\H = A, or
H = B, for some t £ Mip, q) - {e}} , and choose open subsets P and Q of

X n 'V whose closures contain p and q, respectively, such that M(x, y) c N
whenever x € P U {p} and y £ Qu {q}. By Lemma 2.2 there must exist

sequences {p,} and {¿7,} of points in P and Q that converge to p and q,

respectively, such that no arc in X bounces off either 5(p, q¡) or 2?(p,, q) for

any i. We assume, without loss of generality, that f = Ext C, from which

it follows that for every i, Bip, q¡) n L = 0, while there is precisely an odd

number of points in B(j>¡, q) C\ L.
By reducing the size of N, if necessary, we may assume the only end points

of elements of F that are in N are those that belong to A/"(p, q). There

must be an integer / such that, for each H £ F , either ß(p, qf) or Bip¡, q)
separates the end points of H. For B £ {Bip, q¡), Bipj,q)}, B contains

no bounce points of X. This means either B n H = 0 or B intersects H in

precisely an odd number of points for each H £ F. Let CR be the number

of points of Bip, q) where X crosses Bip, q), and let BO be the number of

points where X bounces off J?(p, q). Then, counting the point e separately,

zz = 1 + CR + BO. Let BOx be the number of points t of A/(p, q) where
Bip, q¡) intersects both At and Bt, and let B02 = BO-BOx . Then 5(p, qf)
intersects the arc At U Bt an even, possibly zero, number of times whenever

At U Bt bounces off 5(p, q) at t. Counting the points in 5(p, qj)f)X, first

those near the CR crossing points of 5(p, q), we obtain

fCZM-l 1 (BOx "I (CR BOt      \

n = l J£i2ai + l)\ + ¡Y/2ai\=2¡^al + Y/ai\ + CR.
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On the other hand, the count for BiPj, q)C\X yields

{CR+l 1 (BCh ~\ fCZM-l BCh      -\

Ç(2a;. + l)| + |Ç2^;| = 2(Ça;. + Ç(Ji| + CA4-l,

where (2a'CÄ+1 + 1) is the odd number of intersections of B(j)j, q) with the

arc L. Equating these two expressions for zz, we obtain the contradiction that

zz is both odd and even.

The proof of the second part of Lemma 2.5, where q is a limit point of both
X n Int C and X n Ext C, is similar to the above, except that the points q¡ and

Pi are selected to both converge to q with p, and q¡ on opposite sides of C.

We leave it to the reader to fill in the details to obtain the same contradiction

that zz is both odd and even. Lemma 2.5 follows.

3. No triodic plane continuum has the zz-MP

In the following theorem one may assume zz > 1 since it is easy to show

(using, e.g., Lemma 2.3) that a triodic continuum cannot have each of its midsets
consist of a single point.

Theorem 3.1. If a continuum X in E2 has the n-MP for some natural number

n, then X cannot contain a triod.

Proof. Suppose X is a continuum in E2 such that X contains triod T and zz

is a natural number such that X has the zz-MP. Let the vertex of T be v , and

let Wi, for i = 1,2,3, denote the legs of T . For each r > 0 let Cir) denote

the circle of radius r that has its center at v , and choose u > 0 such that
C(m) n Wj ̂  0, for each i. Then T contains a triod T with vertex v and legs

L¡ such that, for z = 1, 2, 3, L, c W¡ and L, has an end point e¡ such that

Li n Ciu) = {e¡} . For p 6 E2, let Cip) = Cipiv, p)). Although most of the
following sixteen numbered assertions are stated relative to the vertex v , some

of them are later applied as well at other vertices of triods in X. The proof of

assertion (16), the last one, uses Lemma 2.5 to produce a contradiction.

(1) If, for some r > 0, C(r)nl contains an arc and c is a point of C(r)nAr,

then c cannot be a limit point of both X n Int Cir) and X n Ext Cir).

Proof of'(1). Suppose there exists r > 0, an arc icC(r)nI, and a point
celflC(r) suchthat c is a limit point of both Xnlnt C(r) and XnExt C(r).

For each m £ A- {c} , X must contain an arc that bounces off 5(zzz, c) at v .

It follows from Lemma 2.3.2 that 5(zzz, c) must contain a bad point. Then the

uncountable set {Bim, c)\m £ A-{c}} lies in the set ßiv), which contradicts

Lemma 2.4. (1) follows.
(2) If, for some r > 0, Cir) n X contains an arc A , then the end points of

A cannot both be limit points of either X n Int C or In Ext C.

Proof of L2). The proof is much the same as for (1).

Definition. An annulus at a point v' is the open annulus between two circles

centered at v', and an arc A is said to span an annulus U if Int^4 c U and

the end points of A lie in different components of BdU .

(3) If U is an annulus at v and Ax , A2, and A3 are disjoint arcs in X such

that each A¡ spans U, then, for each circle Cir) lying U, each component of

Cir) ni isa point.
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Proof of (3). Suppose there exists an r such that Cir) c U and Cir) n X

contains an arc. It follows from (1) that, for each i £ {1, 2, 3}, there exists an

arc 6i such that f?, c ^4, n C(r) and from (2) that one end point ¿z, of 0, is a

limit point of Lj n Int C(r) and the other end point b¡ of 0, is a limit point of

Li n Ext Cir). If each 6¡ is given an orientation from a¡ to />,, then some two

of them, say 6X and 62, must have the same orientation on Cir), and with

no loss in generality, it may be assumed axbxa2b2 is the clockwise orientation

on Cir). Let ca be the clockwise rotation about v such that <y(¿zi) = ¿22 , and

choose an arc 4* in ¿y(0i) n 62 such that a2 £*¥. For each x e 4*, Biax, x)

separates ¿Zi from a2 and there exists an arc in T that bounces off B{d\, x)

at v . For i £ {1, 2} , define *¥,; = {x £ 4* : there is an arc Ax c T such that

Ax bounces off Biax, x) at v to the ¿2,-side of Biax, x)} .

For each x € 4*2, it follows from Lemma 2.3.3 that Biax, x) contains a

bad point. This means x¥2 is countable because ßiv) is countable (Lemma

2.4). Since 4* = y¥x U 4*2 and 4* is an arc, y¥x must be uncountable. For each

x £ 4*1 , the point ¿y_1(x) = x' £ 8X has the property Biax, x) = Bix', a2).

But ¿32 is a limit point of X n Int Cir), so Bix', a2) contains a bad point

by Lemma 2.3.3. This contradicts Lemma 2.4 because the set {Biax, x)\x £

4',} = {Bix', a2)\x' £ ¿y-1(4/i)} is uncountable. (3) follows.

(4) If r £ (0, u), then each component of Cir) ni isa point.

Proof of'(4). (4) is an immediate consequence of (3) and the fact that each L,

spans the open annulus C(zz) - {v}.

(5) If X contains a triod V with vertex v', U is an annulus at ti', and
there exist arcs Ax, A2, A3 in X, each of which spans U, such that for every

x £ Ax, points y £ A2 and z £ A3 exist with the following properties:

(a) piv', x) = piv', y) = piv', z) and

(b) {¿?(x,y), Biy,z), Bix, z)} c fi(iz'),

then there exists an annulus £7' in *7 at u' and three arcs Xx , X2, X3 such

that, for each i, X, c A,., X¡ spans U', and X,• U {v'} lies in a straight line.

Proof of(5). Since ßiv') is countable by Lemma 2.4, the collection /?' of all

ordered triples of elements of ßiv') is also countable. Let T¡, i = 1, 2, 3, ... ,

denote the elements of /?', and for each i, define M¡ to be the set of all points

x c Ax such that there exist y £ A2 and z £ A3 with (i?(x,y), 5(y, z),

5(x, z)) = Ti. By hypothesis, ^1 = \J°ZX M¡, and it is not difficult to prove
that each M¡ is closed. A Baire category theorem [11, 25, p. 185] shows the

existence of an integer Zc and an arc X'x in Ax such that X'x c Mk . Since v'

is the vertex of a triod in X, (3) can be applied at the vertex v' to see that X'x

cannot lie in a circle at t)'. This means there exists an open annulus U' in U

at v' and a subarc Xx of X'x such that Xx spans U'. Let iBx, B2, B3) = Tk,

and let /?,-, for z e {1, 2, 3}, be the reflection of E2 in 2?,. If the composition

R2 o i?] is denoted by co, a rotation about z;', then R3R2RX (x) = i?3<y(x) for

each x € Xi . However, the reflection J\3 changes the orientation of three

noncollinear points while œ does not. Since the composition R3 o co is the

identity map on Xx, the point set Xx u {v'} must be collinear. To complete

(5), let X2 = RxiXx) and X3 = R2iX2).

(6) If 0 < t < r < u, L is an arc in X from v to a point e £ Cir), and

L c C(r) U Int Cir), then L n C(z) contains no more than two points.
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Proof of Hb). Suppose there exist an arc L as in (6) and a circle C(r), 0 < t < r,

suchthat C(r)nL contains three points. Impose an order on L with v as the

first point. Since t < u it follows from (4) that each component of Ln C(r) is

a point, so an annulus U exists at v such that L contains three disjoint arcs

Ax , A2, A3 each spanning U and U C Int C(r). Assume Ax < A2 < A3 in
the order on L, and assume further that if A is an arc in L that also spans U

such that A ^ A¡, for i £ {1, 2} , then A2 < A on L. From (4) and Lemma
2.3.1 one sees that (5) applies, and from (5), it may be assumed, without loss of

generality, that each of the sets A¡ u {v} lies in a straight line. For each i, let

BdAj » {a¡, b¡} where ¿z, < b¡ in the order on L. This means b2 lies between

v and ¿22 on the line B through A2U{v} . If x < y in L the interval notation
[x, y] is used to denote the subarc of L joining x to y .

Let R be the reflection of the plane in B, let K be the component of

E2 - i[v, a2] c Ri[v, a2])) containing b2, and note that K c Int C\r). Since
b2£ K c Int Cir) and e £ Cir), the arc [b2, e] intersects BdK at some point

x in RHv, a2)). Then ß(x, i?-1(x)) = B, which contradicts the zz-MP since

A2cB . Then (6) follows.
(7) For i £ {1, 2, 3} and / e (0, u], C(i) n L, is a point.

Proof of (J)w. Suppose (7) false. By construction C(zz) nL, is a point for each

i, so there exist t £ (0, zz) and j £ {1,2,3} such that L; n C(r) contains

two points. But since C(r) separates the end points of L¡, it follows from (4)

that there must exist t' near t such that L; n C(i') contains three points. This

contradicts (6), and (7) follows.

(8) For / e {1, 2, 3} , L, is a straight line segment.

Proof of (8). From Lemma 2.3 and (7) it follows that each bisector 2?(x, y),

where x and y are chosen equidistant from v and in different legs of T,

lies in ßiv). From (7), the collection Fx2 = {Z?(x,y)|x £ Lx, y £ L2,

{x,y} c Cir), and 0 < r < u} is a continuous family of lines in ßiv).

If Fx2 contains two distinct bisectors, then it contains uncountably many be-

tween them. Therefore, since ßiv) is countable by Lemma 2.4, FX2 consists

of a single line Bx. The analogous sets F2Í and Fxí similarly consist of single

lines B2 and B3, respectively. As in the last part of the proof of (5), this

means Lx transposes to itself under the composition of a rotation about v and

a reflection in B3. Unless Lx is a line segment, this is a contradiction, and

similarly, L2 and L3 must be segments. From this, (8) follows.

Definitions and Notation. With T fixed, let Tt = {zz|C(zz) meets each of the

three legs of a triod containing T in precisely one point}. Since X is compact,

Tt has a least upper bound pj, and it follows from (8) that there exists a

triod T* inln iCipT) U lntCipT)) such that T c T* and the legs of T*
lie on lines through v . Now let T vary; define T = {pr\T is a triod in
X n iCipr) U Int Cipr)) with vertex v} , and let p be the least upper bound

of T. To see there is a triod T** in In (C(/z) U IntC(/z)) with v as its
vertex, suppose not. Then there must be an infinite sequence {/,-} of straight

line segments in In iCip) U IntC(/z)) such that v is one end point of each

7, and {diam /,} converges to p. Since I is compact, some subsequence of

{/,} converges [10, Theorems 58 and 59] to an interval I that also must lie in
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I. But then Miv, x), where v and x are the end points of I, must contain

infinitely many points of I, contrary to the zz-MP.

In the sequel, let C denote the "maximal" circle C(/z), let T denote the

"maximal" triod T**, and for each i, let L, denote a leg of T. For i £

{1, 2, 3} , let 6i denote the component of I n C containing the end point e¡
of the line segment L,. From the choices of C and T, it follows from Lemma

2.1 that not all three of the sets 0, can contain limit points of I n Ext C.

(9) The legs of T may be named such that 6X = {ex} and 62 = {e2} .

Proof of'(9). Suppose two of the sets, say 8X and 62, contain more than one

point. Without loss of generality, assume the arc L2UL3 bounces off Biex, e2)

to the ¿?2-side of Biex, e2) at v . Then, because of (8), there is a subarc 02 of

02 such that L2uL3 bounces off Biex, x) to the x-side of Biex, x) at v for
all x in 02 . Because ex is a limit point of I n Int C, it follows from Lemma

2.3.3 that Biex, x) £ ßiv) for every x £ 02. But this contradicts Lemma 2.4,

and (9) follows.

(10) Without loss of generality, ex is not a limit point of In(CU Ext C).

Proof of i 10). By the choice of T and C as the maximal triod and circle at
v , respectively, (see the remarks following the proof of (8)) one of the three

points ¿?i , e2, and £3, say x, is not a limit point of I n Ext C. If x cannot

be chosen to be ex, then ex is a limit point of In Ext C and it follows from

(1) that 03 = {^3} . Then x cannot be a limit point of InC. In this case

rename the legs of T and their end points such that x = ex, and (10) follows.

(11) The point ex is not a limit point of I - Lx .

Proof of (11). Suppose (11) is false. Then by (10), ex is a limit point of In
IntC - Lx . Let A be an arc in I joining ex to a point f £ IntC such

that AC) L2 = 0 and / $ L\. By (10), we may assume A - {ex} c IntC.
For each a £ A, let a' be the unique point of L2 n C(a), and note that, by

Lemma 2.3.2, Bia, a') e ßiv), for each a £ A - {ex} . Also note that e'x = e2 ;

and Biex, e'x) £ ßiv) by Lemma 2.3.1. Since every line between B{ex, e{) and

Bif, f) is a bisector Bia, a') for some point ¿2 e A , the set {Bia, a')\a £ A}
is an uncountable subset of ßiv). But this contradicts Lemma 2.4, and (11)

follows.

(12) If V is a triod in I n (C U Int C) and v' is the vertex of V , then

v = v'.

Proof of (12). Suppose I contains a triod V as in the statement of (12) such
that v' t¿ v. As with T, it follows from (8) that the legs of T' are line

segments, so the interiors of all three legs of V lie in Int C. Furthermore, at

least one of the three legs of V , say G, is not linear with the point v . Then

there is an open annulus U at v and three disjoint arcs Ax c Lx , A2c L2,

and A3 c G that span U such that U c CUIntC. Applying (5) at the point
v, we obtain the contradiction that the subsegment A3 of G lies on a line

through v . (12) follows.

(13) If v' is a vertex of a triod in I, then there is a circle C at v' and a

triod T' in I with vertex v' and legs L\ , L'2, L'3 such that:

(a) for each i e {1, 2, 3}. L; c C U IntC and L{ n C =/ 0 ;
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(b) each of L\ n C and L2 nC is a point;
(c) no point of L\ - {v1} is a limit point of I - L\ ; and
(d) the component of In(C'UlntC') containing v' is the union of finitely

many line segments each with v' as an end point.

Proof of (13). Since v was chosen as an arbitrary vertex of a triod in I, it

suffices to show that the above properties hold with the primes removed. The

first property in (13) is clear, the second follows from (9), and the third from

Lemma 2.1, (11), and (12). From (8), the component of I n (C U IntC)
containing v is the union of line segments. Suppose there are infinitely many

line segments in I n (C U IntC), each with v as an end point. Then say

infinitely many such segments lie on the e*2-side of Bie2, e^), and a point e'3

can be chosen in L3 close enough to ^3 that Bie2, e'3) intersects more than n

of these segments near v . This contradicts the zz-MP, and the fourth property

of (13) follows.

( 14) There are at most two points of I that are vertices of a triod in I.

Proof of (14). Suppose that in addition to T there are two triods V and T"

with distinct vertices v' and v" neither of which is v. By (8) it may be

assumed that the legs of all three triods are straight line segments. Without

loss of generality, assume piv, v') < piv, v"), and to obtain a contradiction,

suppose piv, v') = piv, v"). On one side of C(p(tz, v')) there is an open

annulus U at v and three segments in legs of T' U T" that span U. Then

from (5) these three segments, and hence the legs that contain them, are collinear

with v . Since no two legs of either T' or T" can be collinear with v , this is a

contradiction. Thus piv, v') < piv, v") and similarly, piv', v") 7= piv', v).

Let A be an arc in I from v to v". Suppose v' g A. Then there exists

an open annulus at v on one side of Ci piv, v')) that is spanned by three arcs,

two lying in legs of V and one in A. By (5), two legs of V are collinear with

v , a contradiction. This means v' £ A .

Suppose piv', v") < piv', v). Let K be the circle at v' of radius piv', v").

Then for one side 5 of AT, circles concentric with K and in S all intersect
A and two legs of T" . By (5) these two legs of T" are collinear with v'. A

similar contradiction results if piv', v") > piv', v), and (14) follows.

(15) The continuum I has only finitely many end points.

Proof of (15). Suppose {d¡} is an infinite sequence of distinct end points of

I, and for each i, let A¡ be an arc in I from v to d¡. By (13), applied

at v , there must be a line segment in I from v to a point of C that lies in

infinitely many of the arcs A¡. Since no A¡ contains two end points of I, this

means there is a triod in I with its vertex v' different from v . From (14),

the point v' must be the intersection of infinitely many otherwise disjoint arcs

in I. But this contradicts (13)(d) when (13) is applied at the point v'. Then

(15) follows.

(16) I cannot have the zz-MP.

Proof of il 6). There must exist points p and q in T - {v} suchthat Bip, q)

contains the point ex . To see that p and ¿7 can also be chosen such that no
end point of I, except ex , lies in Bip, q) and no vertex of a triod in I

lies in Bip, q), consider the collection of circles AT(r) of radius r centered at
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ex. There must exist positive numbers s < t and two legs L and M of T

such that Kir) intersects L and M at points p(r) and q(r), respectively, if

s < r < t. Since that is no r such that Lx lies in B{ß{r), <?(r)), it is clear

that {Bipir), ¿z(r))|r e (i, z)} contains an uncountable set of bisectors for I.

From (14) and (15) the union E of the end points of I with vertices of triods

in I is a finite set; so clearly points p and q exist as claimed. Let A be a

neighborhood of Bip, q) such that N n E - {ex} = 0 , and observe that, with

the use of (11), Lemma 2.5(1) follows, with Kir) = C, since both L and M
are segments. Then Lemma 2.5 applies to yield a contradiction. This completes

(16), and Theorem 3.1 follows.

Theorem 3.2. If a continuum in the Euclidean plane has the n-MP for zz > 1,
then it must either be a simple closed curve or an arc.

Since a locally connected continuum is either an arc, a simple closed curve,

or is triodic [10, Theorem 75, p. 218], Theorem 3.2 follows from Lemma 2.1

and Theorem 3.1. In [7] we use the results here to prove the stronger theorem

that if a planar continuum I has the zz-MP for n > 1, then either zz = 1 and

I is an arc, or zz = 2 and I is a simple closed curve. With a few additional

pages it would be possible to include a proof here that no arc or simple closed

curve has the zz-MP for zz an odd integer greater than 1, but the odd and even

cases are done together in [7].
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