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Abstract. The framed braid group on n strands is defined to be a semidirect

product of the braid group B„ and Z" . Framed braids represent 3-manifolds

in a manner analogous to the representation of links by braids. Consider two

framed braids equivalent if they represent homeomorphic 3-manifolds. The

main result of this paper is a Markov type theorem giving moves that generate

this equivalence relation.

In this paper the group of framed braids $n is introduced. This group is

similar to the braid group and is an initial attempt to understand 3-manifolds

in a manner analogous to the braid approach to links in the 3-sphere. The main

theorem describes the equivalence relations on \J^LX 5« that yields the set of

3-manifolds.

Framed braids. Let Bn  denote the braid group with generators ox, oj, ... ,

<7„_i and relations

(1) oioj = ojoi if \i-j\ > 1;

(2) OiOi+xOi = Oi+xOiOi+x.

The geometric braid a¡ is shown in Figure 1.

Let X„ denote the symmetric group acting on {1, 2, ... , zz} . Let n : B„ -+

Z„ be the quotient map sending a, to the transposition (j, z'+l). The kernel of

?i is the pure braid group denoted by P„ . Bn acts on {1, 2, ... , zz} through

n, i.e., aii) = zt((r)(z) for a £ Bn. This paper follows the convention that the

symmetric group acts from the right so that (ot)(z) = t(<7(z')) for a, t £ B„ .

Definition. The framed braid group #„ is the group generated by ax, a2, ... ,
<7„_i , tx, Í2, ... , tn with the relations (1), (2) and additional relations

(3) tjtj = tjtj for all i,j;

(4) Oitj = taiU)Oi.
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Figure 2

The group £„ is a semidirect product Z" x Bn where the action of Bn on

Z" is given by airx ,r2, ... ,r„) = (rCT(1), ra{2), ... , ra(n)). If r? Ç • • • fnna c £„

with a £ Bn then the r,'s are called framings. Note that at¡ = ta-\^a for

a £ Bn . The product and the inverse in this notation are given as follows. See

Figure 2 for an example.

(f? #!- • • trn'a)i$q ■ ■ ■ tsn»ß) = trx,+s°wtr22+s°m ■ ■ ■ tT^aß

and
i?xq ■ ■ ■ fn»a)-x = fxr--imt~ra-im ■ • • z*r°~lwa_1.

The following description of #„ gives its relation to configuration spaces.

The essential facts can be found in [B]. Let P„C = {(zi, ... , z„) e C"|z, /

zj for i / j] then P„C is a A"(P„, 1) space. The symmetric group S„ acts
freely on FnC by ¿r(zi, ... , z„) = (zCT(1), ... , zCT(„)). Denote the orbit space by

P„C. Then p : P„C —» P„C is a regular cover with covering transformations S„

and Ti^PnC) = B„. 1„ also acts on the zz-dimensional torus T" = Sx x ■ ■ ■ x Sx

by permuting the indices and hence on T" x P„C by the diagonal action. Let

Kn = (P" x P„C)/S„ be the orbit space. For the projection p : T"x P„C -» P„C,
the composite pop is a constant map on each orbit and hence there is an induced

map q : K„ -> P„C.

Proposition. (1) q: K„ -* B„C is a locally trivial bundle with fiber Tn .

(2) Kn isa Ki$n, 1) space.

Proof, i 1 ) Consider the following commutative diagram:

T" x P„C —p-^ P„C

I'1" [p
Kn       -^-^ BnC

where the vertical maps are Z„-coverings. If an open set U c P„C is small
enough that p~x U is homeomorphic to Z„ x U then p~xip~x U) « S„ x U x T"

and so q'xU^UxTn.

(2) Let P„C be the universal cover of the configuration spaces P„C and

P„C. The group 5„ acts on P„C via the projection to Bn . Z" acts on R" by
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Figure 3

Y

translations and so 5„ acts on R" via the semidirect group structure. Thus $„

acts on R" x P„C as follows. For a £ Bn , {r\, ... , r„) £ R" and c e P„C,

txx' ■■■txn"oiirx, ... ,rn),c) = Hra{X)+xx, ... , ra(n)+xn), aie)).

This action is properly discontinuous since the actions of Bn on P„C and Z"

on R" both are properly discontinuous. Therefore R" x P„C is the universal

covering space of Kn . Since P„C is contractible, K„ is the Ki$n, 1) space.

It is interesting to note that constructions similar to the Kn arise in homotopy

theory. Compare Kn to a construction by J. P. May with X = Sx and X =

Sx Ubase point (see the survey [C]).

Relationship to framed links. Given a framed braid y one can form a framed

oriented link y by closing the braid. The framing of a link component is
obtained by adding together the framings of all the strands that form that link
component. (See Figure 3.)

Conversely given an oriented framed link one can construct a framed braid

whose closure is the given oriented framed link by applying a theorem of Alexan-

der [B]. The framings can be arbitrarily assigned so that the framed braid closes

to the original framed link. There is obviously an ambiguity in assigning fram-

ings to strands. The following lemma will take care of this problem. By an

isotopy between oriented framed links we mean a link isotopy that preserves
framings as well as orientation.

Lemma 1. a, ß are isotopic oriented framed links if and only if framed braids
a, ß are equivalent via the relation generated by

i 1 ) conjugation in 5„ ;

(2) Markov move, for y £ 5„ . ya„ ~ y ~ ya~x.

Proof. This is a theorem of Markov [B] if one forgets the framings. In fact

the proof of Markov's theorem shows that the components that correspond by

a link isotopy can also be made to correspond when the braids are closed after

conjugations and Markov moves.
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Observe that moves (1) and (2) cannot change the framing of each link com-

ponent after the framed braids are closed.

On the other hand, if two different framings of a braid a give the same

oriented framed link then one can fix one framing of a to get the other via a

conjugation by an element of Z" . Let n(cr) = T1T2 • • • t¿. be the decomposition

of nia) into disjoint cycles. Two different framings fj11% • • • trn" and t\l t% ■ ■ ■ f„"

give the same framed link if and only if £igT r¡ = J2iex s¡ for j = I, ... , k .

After conjugating t[' t% ■ ■ ■ tr„"a by an element txx t*2 ■ ■ ■ tx", the framing becomes

,'.+*,-*„<■)£+*2-*„<2,... trn+xn-xaW   Thus one needs tQ solve the system of equa.

tions:

x¡ -xa(i) = St - r,   for i = I, ... , n

or

x¡ - xT)(i) = St - r;   for i € Xj, j = I, ... ,k

for xx, X2, ... , x„ . Suppose x¡ is an zzz; cycle so r™j = 1. Choose Pj £ x¡

for each cycle. Each i for i = I, ... , n then can be uniquely written i = TjiPj)

with 1 < q < m¡. Furthermore xT«(Pj) = J27=q sri.{p) ~ V(p ) is a solution to the

system of equations. Note that xXj{yj) = 0 since ¿zet s' ~ r' ~®-    D

Relationship to 3-manifolds. Every orientable closed 3-manifold is obtained by

a framed surgery on a link in S3 [L], Therefore by ignoring the orientations of

the closures of framed braids we have

Proposition. Every orientable closed 3-manifold can be described by a framed

braid.

A theorem of Kirby [K] tells when two different framed links determine

homeomorphic 3-manifolds. Since an orientation on a link is crucial to obtain
a braid representation, one has to modify the theorem of Kirby to accomodate

this extra structure. At the same time the moves of Kirby will be simplified so

that they can be more easily described in a braid setting.

Lemma 2. Two oriented framed links Lx and L2 represent homeomorphic 3-

manifolds if and only if one can obtain L2 from Lx by a sequence of the following
equivalences:

i 1 ) isotopy ior combinatorial equivalence),

(2) adjoin or delete a split unknotted component with +1 or -I framing,

(3) ¿zzz oriented handle slide over an unknotted component with framing +1

and a change in framing to the old framing +1+2 ilinking number with

the unknotted component) (see Figure 4),
(4) reverse the orientation of an unknotted component with framing +1.

Proof. The orientation in (2) is not relevant since one can reverse the orienta-

tion of a split unknotted component with an isotopy.

Two unoriented framed links represent homeomorphic 3-manifolds if and

only if they are related by isotopies and Fenn-Rourke moves [FR]. According

to a simplification by Turaev (see [LI]), framed links represent homeomorphic

manifolds if and only if they are related by isotopies, Fenn-Rourke moves with

+ 1 framing and moves (2) with -1 framing. A Fenn-Rourke move with +1
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framing can be described as a sequence of handle slides over an unknotted

component with framing +1 as in Figure 4 and move (2) with +1 framing.

Each of these handle slides is a move (3) or a move (4) followed by move (3).

Conversely move (3) can be generated by Fenn-Rourke moves [FR].

The proof will be completed if one can reverse the orientation of any link

component. First unknot the component by changing crossings with the Fenn-

Rourke moves and change the framing to +1 again with Fenn-Rourke moves.

Reverse the orientation of the now unknotted component with move (4). Then

undo all the Fenn-Rourke moves to obtain the original link with the orientation
of one component reversed.   D

In order to obtain the moves of braids corresponding to the moves (3) and

(4) of the above lemma, we need the following modification of Alexander's

theorem.

Lemma 3. Suppose that L is an oriented ipolygonal) link with a link projection

such that in some square region U the projection is already oriented counter-

clockwise with respect to a base point at the center of the square. Then L is
isotopic icombinatorially equivalent) to a closed braid and the isotopy leaves the

portion in U unchanged.

Look ahead to Figures 8 and 9 for an example. It does not matter what the

link diagram is in Figure 8 outside of the dotted region U. One can arrange the

link as in Figure 9 with the region U intact.

Proof. After small pertubations, one may assume that the projected diagram is
transverse and there is no edge that runs in the radial direction from the base

point, the point to be the center of the closed braid. Subdivide the edges that run

clockwise so that each subdivision does not contain overcrossings and under-

crossings simutaneously. Let [a, b] be an edge containing only overcrossings
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or no crossing. Choose a point c in the square so that the triangle abc contains

the base point and edges [¿z, c] and [b, c] are transverse to the diagram. This

is illustrated in Figure 5a with the base point labeled X. Choose a square that

is slightly larger than the given square. Replace the edge [a, b] as in Figure 5b

so that newly formed edges run counterclockwise over the existing diagram. If

the edge [a, b] contains only undercrossings do the similar construction under

the existing projection.   D

Let Wnj = o„-Xo„-2-■■Oj+xOjOj+x--■on-2on-X be the braid in Bn as in

Figure 6.
For / < n let X¡ assign to each permutation in Z„_] a function from

{1,2, ... , n - 1} to {0, 1, ... , zz - /} as follows. Suppose t 6 X„_i de-
composes into a product of disjoint cycles txt2 ■ ■ ■ t¿ . If p occurs in some

tj = Ui > 72, • • • , jm) then A,(t)(p) is defined to be the number of elements in

the intersection {jx, j2, ... , jm}Ci{i, i+l, ... , n - 1} .
The following is our main theorem. It is a braid version of Kirby's theorem

in [K].
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Figure 6

Theorem. Two framed braids represent homeomorphic 3-manifolds if and only

if they are related by the equivalence relation generated by the following moves:

(1) Markov move: for ß £$„ , ßa„ ~ ß ~ ßa~x ;

(2) blow up: for ß£$n, tn+xß ~ ß ~ t~x+xß ;

(3) handle slide: for a, ß £ 3>,_i,

tnWntJaW-\ß ~ r„+1 if"(H/ ,„„H/ ;;(T-i)Q(^-J.(T-11F„,¡(T„)y3(T-2tr-_11

wAere A = Ai(«(j8a))(a(n- 1)) - Xjiniaß))(n - 1) ;

(4) orientation reversing, for a, ß£ 5„-i, tnWnjaW~)ß ~ t„W~jaWnjß;

(5) conjugation by framed braids.

Figure 7 demonstrates moves (2), (3), and (4). Note that X is the linking

number between the appropriate components according to Kirby's formula.

Proof. By Lemma 1, every isotopy of oriented framed links can be realized

via moves (1) and (5). We will show that the moves (2), (3), and (4) between

framed braids respectively correspond to the moves (2), (3), and (4) of Lemma 2

between oriented framed links. Then this theorem follows from Lemma 2.

The split unknotted component of framing ± 1 can be represented as the last

strand of the framed braid so move (2) corresponds to move (2) in Lemma 2.

For moves (3) and (4) in Lemma 2, consider a square containing the unknot-

ted component as in Figure 8. After applying Lemma 3 and combing the link

outside the square, one can arrange the link as in Figure 9.

Then Figure 10 depicts the oriented handle slide over the unknotted component

of framing +1 as in Figure 4(b). In each of Figures 9 and 10 there is a dashed

radial line. Cut along these dashed lines to obtain an opened braid from the

closed braid.

The oriented handle slide in Figure 4(a) can be obtained by rotating it by
180 degrees then reversing the orientation of the unknotted component. This

gives Figure 4(b). Figure 11 depicts reversing the orientation of the unknotted

component of framing +1. Cut along the dashed lines.   D

One can approach the study of 3-manifolds by studying representations of

5„ . The particular choice of framed braid that represents a 3-manifold depends

on its conjugacy class by move ( 1 ). Therefore any 3-manifold invariant is a class
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function. We believe the relations in Theorem 5 are reasonably simple enough

so that one can do algebraic manupulations to understand some invariants of

3-manifolds.  For example one may use a representation of the framed braid

+1 -1

Move 2

n-j
strings

n - (
strings

^m

+i

s=r

^v ^

Move 3

n-j
strtnt;

n -1
strings

+ 1

Move 4

Figure 7
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braid

P

Figure 9



550 Kl HYOUNG KO AND LAWRENCE SMOLINSKY

Figure 10
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strings
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£>•

U

Figure 11

group in a deformed group algebra of the signed permutation group and concoct

a trace that behaves well under the other moves in the main theorem. The braid

group representation in the Hecke algebra used in [J] tends to nullify framings.
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