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AN ORDER THEORETIC CHARACTERIZATION
OF PEANO CONTINUA

SARAH E. HOLTE

(Communicated by Franklin D. Tall)

Abstract. A characterization of Peano continua as images of dendrites is ob-

tained which allows us to characterize Peano continua order-theoretically.

1. Introduction

Order theoretic characterizations have been obtained for a number of topo-

logical spaces which are arc-connected and acyclic. Spaces which have yielded

such characterizations include dendrites and trees [W2], dendroids [W5], den-

dritic spaces [W6], and topologically chained continua [W3]. However, for

spaces which are not acyclic, only local trees have been characterized order the-

oretically. One such characterization is due to L. E. Ward [W4], and another

is due to G. Dimitroff [D]. Furthermore, both Ward [Wl] and V. Knight [Kn]

have described partial orders for Peano continua. Ward [Wl] shows that any

Peano continuum may be partially ordered in terms of its cutpoints. Knight

[Kn] constructs a continuous partial order for Peano continua, and uses it to

show that any Peano continuum is arc-connected. However, neither of these

partial orders characterizes Peano continua.

In this paper, an order theoretic characterization of Peano continua is ob-

tained. Peano continua are characterized as images of dendrites in such a way

that we are able to partially order them using the partial order on the den-

drites described in [W2]. It turns out that this partial order characterizes Peano

continua.

2. Preliminaries

A continuum is a compact connected Hausdorff space. A locally connected

metric continuum is a Peano continuum.

A connected Hausdorff space is dendritic if every pair of distinct points in

the space can be separated by a third point in the space. A compact, dendritic

space is a tree. A dendrite is a Peano continuum which contains no simple closed
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curves. It is known (Theorem V.l.l of [Wh]) that a dendrite is a metrizable

tree.

The space X is said to be rim-finite, or regular, if every point has arbi-

trarily small neighborhoods which have finite boundaries, and X is said to be

rim-compact if every point has arbitrarily small neighborhoods with compact

boundaries. A point x e X is an endpoint of X if there exists arbitrarily small

neighborhoods of x with one point boundaries. We will let E(X) denote the

set of all endpoints of X.
If X is a continuum, < a partial order on X, and x e X, v/e will use the

following notation:

L(x) = {y e X : y < x}   and   M(x) = {y e X : x < y}.

If {(x, y) : x < y} is a closed subset of X x X, we say that < is a continuous

partial order. If L(x) and M(x) are closed for each x£l,we say that the

partial order is semicontinuous, and call X a partially ordered topological space

(POTS). It is easy to see that every continuous partial order is semicontinuous.

A partial order is order dense if for each pair of elements, x and y, such

that x < y, there exists z e X such that x < z < y. We will let Max(X)

denote the set of all maximal elements of X, and Min(X) denote the set of all

minimal elements of X. We say that an element x e X is a zero if x < y for

all y e X. We conclude this section with a theorem which is originally due to

A. D. Wallace [Wa].

Theorem 2.1 (Theorem 1, [Wl]).  A compact POTS contains a maximal element.

3. Two characterizations of Peano continua

The first theorem of this section characterizes Peano continua as images of

dendrites under maps which are one-to-one except on the endpoints of the den-

drite. This theorem will allow us to partially order any Peano continuum using

the cutpoint partial order on the dendrite described in [W2]. This partial order

will then be used to characterize Peano continua order theoretically.

Theorem 3.1. If X is a metric space, then X is a Peano continuum if and only

if X = 4>(D) where D is a dendrite and <f> is a map satisfying the following

conditions:

(i)   0|d_£(d) is one-to-one,

(ii)   4>(E(D))n<t>(D-E(D)) = 0.

Before proving the theorem we state two lemmas.

Lemma 3.2 (Lemma 2, [W7]). If Dx and D2 are dendrites with Dx c D2 , then
there exists a retraction r : D2 —> Dx which is monotone.

Lemma 3.3. // D is a dendrite and Z is a dense connected subset of D, then

D-Z c E(D).

Proof. Suppose that there exists d e D - Z such that d is not an endpoint

of D. Then D - {d} has at least two components. Let Cx be the component

of D - {d} which contains Z and let C2 be another component of D — {d} .

Then C2 is open since D is locally connected and Z c D - C2. Therefore,

Z c D - C2 , a contradiction since Z = D . Thus D - Z c E(D).
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We are now ready for the proof of Theorem 3.1. First suppose that X = </>(/))

where D is a dendrite and 0 is a map. Then X is the image under a closed map

of a locally connected continuum, so that X is a locally connected continuum.

Now suppose that X is a Peano continuum. By Lemma 2.3 of [W8], there

exists a nested sequence of dendrites Dx c D2 c • • • c Dn c • •• satisfying the

following conditions:

(i) if y = lXoA,,then Y = X,
(ii) if C is a component of Dn+X - Dn , then diam( C ) < 2~n ,

(iii) if E is a component of Dn+i - Dn ( i > 1 ) whose one point boundary

in D„+i is an element of Dn - Ai-i  , and if K is the component of

Y - Dn which contains E, then K n Ai-i = 0 .

For each D„ c Dn+X, let rn : Dn+X —> D„ be the retraction of Lemma 3.2, and

let

/>«,= lim {Dn,rn}

where lim{D„, rn} is the inverse limit space of the sequence {D„ , rn} . Lemma

1 of [W7] shows that A» is a dendrite. Define 4> : A» -* X by

(p(d) — lim d„

where d = (dx, d2, ...). Lemma 4 of [W7] shows that 0 is a well-defined
continuous surjection. Let

Z — {d e A» : d is eventually constant}.

It follows from the proof of Theorem 1.1 in [W8] that <f>\z '■ Z —> Y is a

bijection, </>(Ax> -Z) c X -Y, and Z = A» . Furthermore, it is easy to check

that </>_1 : Y —> Z is a continuous surjection. Since 7 is connected, it follows

that Z is connected. Therefore, Z c A» with Z connected and Z = A».

Lemma 3.3 shows that A» -Z c £(A») • This implies that A» -£(A») c Z
and so «/»Id^-^d^) is one-to-one. In addition, since <zKAo - Z) c X - Y, it
follows that 0(A» - Z) n <£(Z) = 0 and so (ß(E(D)) n </>(£> - £(!>)) = 0 • This
completes the proof of Theorem 3.1.

The next lemma will be useful in the order theoretic characterization of Peano

continua.

Lemma 3.4. Let X be a Peano continuum, <f> : D —► X a map such that (¡>\d-e(D)

is one-to-one and 4>(D - E(D)) n 4>(E(D)) = 0. If A(X) = {x : \4>~l(x)\ > 1} ,
then X-A(X) is a connected, arc-connected, locally connected, regular, dendritic

subset of X.

Proof. It is easy to check that X — A(X) is homeomorphic to D — (j>~x (A(X)).

Furthermore, since 4>\d-e(D) is one-to-one and 4>(D - E(D)) n <f>(E(D)) = 0, it

follows that 4>~X(A(X)) is a subset of E(D). Thus D-^~l(A(X)) is connected,
arc-connected, locally connected, regular, and dendritic and so X - A(X) has

the same properties.

Before using Theorem 3.1 to describe a partial order for Peano continua, it

will be useful to recall the partial order for dendrites described in [W2]. It is

known as the cutpoint partial order with respect to some basepoint e . Let D

be a dendrite, and e e D. Define a relation <e on D as follows: x <e y if and
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only if x — e, or x — y , or x separates e and y . We write x <e y if x <e y

and x / y. It is shown in [W2] that <e satisfies the following conditions:

(i)   <e is continuous,

(ii)   <e is order dense,

(iii) for xeD, y e D , it follows that L(x) n L(y) is a nonnull chain,

(iv)   M(x) - {x} is an open set for each xeD.

Furthermore, e is zero with respect to this partial order. Finally note that if e

is not an endpoint of D then E(D) = Max(D).

We are now ready to use Theorem 3.1 to describe a partial order for any

Peano continuum. Let X be a Peano continuum. By Theorem 3.1, there exists

a dendrite D, and a map 4> : D —* X such that (/)\d-e(d) is one-to-one and

<p(D - E(D)) n <t>(E(D)) = 0. Let e be an element of D - E(D), and let <e
be the cutpoint partial order on D with respect to e . Define a binary relation

<d on X as follows: x <d y if and only if there exists p e (f>~l(x) and

q e <f>~l(y) such that p <e q. We write x <d y if x <d y and x ^ y. Let

A(X) = {xeX:\<t>-\x)\> 1}.

Lemma 3.5. If x e A(X) and y e X such that x <d y, then x = y .

Proof. If x e A(X)  it follows that 4>~l(x) c E(D).   Furthermore, since

x <d y, there exists p e 4>~i(x)  and q e 4>~l(y) such that p <e q.   But

p is an element of E(D) c Max(D) and hence p = q.   Therefore x = y

since x = 4>(p) = 4>(q) = y .

Lemma 3.6. If x is an element of X such that x <d y for some y e X, then

Proof. Suppose |</>~'(x)| > 1 . Then x e A(X) which implies that x = y by

Lemma 3.5. This is a contradiction so it must be the case that |0_1(x)| = 1 .

Proposition 3.7. The binary relation <p> on X is a continuous, order dense

partial order on X .

Proof. First note that <d is reflexive. To see that <d is antisymmetric, sup-

pose that x <d y and y <d x. If x ^ y, then x <d y and y <d x . But

x <d y implies that \<f)~l(x)\ = 1, and y <d x implies that \4>~l(y)\ = 1 •
It follows that (p~l(x) <e 4>~x(y) and <p'~l(y) <e <t>~l(x) which implies that

4>~l(x) — 4>~l(y) since <e is antisymmetric. But this implies that x = y, a

contradiction. It follows that <p> is antisymmetric.

To see that <o is transitive, suppose that x <d y and y <d z . Lemma 3.6

implies that ^"'Ml = \(p~l(y)\ = 1, and that <f>~l(x) <e <t>~l(y). Also, there

exists r e 4>~x(z) such that (f>~l(y) <e r. Since <e is transitive, it follows that

<t>~x(x) <e T, which implies that x <p> z. Therefore <d is transitive, and it

follows that <d is a partial order on X .

In order to see that <d is continuous, we note that

{(x, y) e X x X : x <D y} = (4> x <f>)({(p, q) e D x D : p <e q}

where (4> x </>)((/?, q)) = (4>(p), 4>{<l)) • Now it is easy to see that {(x, y) e

X x X : x <d y} is closed, since {(p , q) e D x D : p <e q} is closed in Dx D,

and ((f) x (j)) : D x D —> X x X is a closed map. Therefore <d is a continuous

partial order.

Finally, we want to show that <d is order dense, so suppose that x <d y ■

Then \tp~l(x)\ = 1 , and there exists q e <j>~x(y) such that (fi~l(x) <e q . Since
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<e is order dense, there exists r such that (f>~x(x) <e r <e q which implies

that x <d (p(r) <d y so that <d is order dense. This completes the proof of

the proposition.

The next three lemmas record some useful properties of the partial order
<D-

Lemma 3.8. If x e X, then

M(x)=     (J    cj>(M(p))   and   L(x) =     (J    <f>(L(p)).
petf-'M p€4>-Hx)

Proof. Let x e X. Suppose y e M(x). Then x <d y which implies that

there exist p e <fi~](x) and q e 4>~x(y) such that p <e q. It follows that q

is an element of M(p) which implies that y e <f>(M(p)) where p e (f>~l(x).

Now suppose that y e \jpe<j¡-ux)(j)(M(p)). Then y = tp'(q) where q e M(p)

for some p in 4>~l(x). As a consequence p <e q, hence x <D y. Therefore

y e M(x). Thus we have proved that M(x) — \Jp€lfl-IM(j)(M(p)). A similar

proof shows that L(x) = UPe¿-'(*) <t>iL(P)) ■

Lemma 3.9.  <f)(L(p)) is a chain for each p e D.

Proof. Let x and y be elements of (¡>(L(p)). Then x = (p(qx) and y — (f>(q2)

where {qx, qx} c L(p). Since L(p) is a chain in D, it follows that qx <e q2

or q2 <e qx, say qx <e q2. But this implies that x <d y since qx e <fr~x(x)

and q2 e <t>~l(y) ■ Similarly, if q2 <e qx , then y <d x . It follows that 4>(L(p))
is a chain.

Lemma 3.10. If x e X - A(X) then L(x) is a chain.

Proof. Suppose that x e X - A(X). Then Lemma 3.8 implies that

L(x)=     (J     4>(L(p)).
pe<t>-l(x)

But x ^ A(X) implies that (t>~l(x) is a single point. Thus L(x) = cf>(L((t>~1 (x))

which is a chain by Lemma 3.9.

Lemma 3.10 shows that L(x) is a chain for each point of X which is not a

member of A(X). Our next lemma relates the cardinality of the set 4>~l(x) to

that of a maximal antichain of L(x) for each x e A(X).

Lemma 3.11. Let x e A(X). Then 4>~l(x) is finite if and only if every antichain

of L(x) is finite. Furthermore, if \<j>~l(x)\ = n < oo, and A is an antichain of

L(x), then \A\ < n .

Proof. Suppose \<f>~l(x)\ = n < oo and let A be a subset of L(x) such that

\A\ > n.  It follows from Lemma 3.8 that L(x) = \jp^-x,x)à)(L(p)).   Since

|0_1(x)| = zz, it must be the case that there exists p e <t>~l(x) such that <f>(L(p))

contains at least two members of A , say {ax, a2} c A C\(f)(L(p)). Furthermore,

Lemma 3.9 shows that <f>(L(p)) is a chain. Therefore ax and a2 are com-

parable, which implies that A is not an antichain. It follows that every antichain

of L(x) is finite, and that if A is an antichain of L(x), and if \4>~x(x)\ = n ,

then \A\ < n .
Now suppose that 4>~{(x) is infinite. Let po be a limit point of 4>~l(x),

and let {pn} be a sequence in <f>~l(x) which converges to A) • Let P = {p„}.
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We may assume that po / p„ for all n eN, so that Po $ P ■ Note that P is
a subset of </>~'(x) which is contained in Max(D). Now we will establish the

following claim:

Claim. For each pkeP, there exists zk <e pk such that M(zk) C\P = {pk} .

Suppose that pkeP. Let sk = sup(L(po) n L(pk)). Then fy is an element
of L(/z0) n L(pyt) by Theorem 2.1. Note that sk <e pk , for if sk = pk , then
pk e L(po) which implies that po = Pk, a contradiction. Therefore we may

choose tk such that sk <e tk <e pk. Then p0 i M(tk), for if tk <e po,

then tk e L(po)f) L(pk) which implies that tk <e sk and we chose tk so that

sk <e tk . It follows that po e D - M(tk) which is open. Therefore there exist

N eN such that if n > N then pn e D - M(tk).
Now, for each j < N, j / k, let Sj = sup(L(pj) n L(pk)). Then s, is an

element of L(pj) n L(/z¿) by Theorem 2.1. Note that Sj <e pk since {pk , pj}

is a subset of (f>~l(x) c L'(A) so that pj and /z¿. are not comparable. Let

S = {sx, • • • , íjv_] , Z¿} . Since S c L(pfc), it follows that S is a chain. Let 5
be the largest element in S. It follows that

( 1 ) tk<eS

and

( 2 ) Sj <e s   for each sj e 5.

Also, since Sj <e Pk for each Sj e S and tk <e Pk, it follows that s <e Pk ■
Therefore there exists Zk such that

(3) s<ezk<epk.

We will show that zk is the desired element of D.

First note that zk <e pk by choice. Now suppose there exists p„ e M(zk)nP

such that pn ^ pk . If zz > N, then p„ e D - M(tk). But pn is an element of

M(zk) implies that zk <e pn. Furthermore, (1) and (3) show that tk <e s <e

zk which implies that tk <e s <e zk <e p„ . But this implies that p„ e M(tk),

a contradiction. If n < N, then zk <e p„ and zk <e pk by (3), so that

zk e L(pk)C\L(p„). Also s„ = sup(L(pk)nL(p„)) which implies that zk <e s„ .

But (2) and (3) show that s„ <e s <e zk so that s„ <e zk . We have again

reached a contradiction. Therefore it must be the case that M(zk) r\P = {pk}
and the claim is established.

We will now construct an infinite antichain A of D such that <j>(A) is an

infinite antichain of L(x). For each pneP, there exists a point z„ such that

z„ <e pn and M(zn)C\P = {p„}. Let A = {zn : n e N}. Suppose that zj <e zk

for some zj and zk in A, j ^ k. Then z¡ <e pk so that pk e M(zf). But

this contradicts the fact that M(zf) n P = {pj}. Therefore A is an antichain

of D.
Finally, consider <f>(A). First note that if <f>(z„) e <f>(A) then <t>(z„) <d x

since z„ <e p„, z„ = (¡>~l((t)(z„)), and p„ e <f>~l(x). Therefore 4>(A) c

L(x). Also note that since A c D - E(D) it follows that <f> is a bijection

between A and <p(A) and so <£(/!) is infinite. To see that 4>(A) is an antichain,

suppose there exist </>(zf) and <t>(zk) in 0(^4) suchthat <j>(zj) <d (¡>{zk). Since

(j)~l((j)(zj)) = {zj} and ¿)~l(<j)(zk)) — {zk}, it must be the case that <j>(Zj) =
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<t>(zk). Thus 4>(A) is an infinite antichain of L(x) and this completes the proof

of Lemma 3.11.

The following theorem summarizes the properties of the partial order just

constructed for Peano continua.

Theorem 3.12. Let X be a Peano continuum and <j> : D —> X where D is a

dendrite and <j> is a map such that 4>\d-e(D) is one-to-one and <p(D - E(D)) n

4>(E(D) = 0. Let A(X) = {x : \(p~l(x)\ > 1}. Define a binary relation <D
on X by x <d y if and only if there exist p e <p~x(x) and q e 4>~{(y) such

that p <e q where <e is the cutpoint partial order on D with respect to some

basepoint e. Then <d is a continuous, order dense partial order satisfying the

following conditions:

(i)   A(X)cMax(X),
(ii) the point (¡>(e) is a zero and ifxeX- A(X), then L(x) is a chain,

(iii) if x e A(X) and A is a maximal antichain of L(x), then \A\ — n < oo

if and only if \<¡>~x(x)\ = n < oo.

The next lemma is needed for the order-theoretic characterizations of Peano

continua.

Lemma 3.13. Let X be a compact Hausdorff space which admits a continuous,

order dense partial order < with zero e, and suppose that A(X) c Max(Jf)

suchthat L(x) is a chain for each x e X - A(X). Then L(x) is connected for

each x e X - A(X), and X and X - A(X) are both connected.

Proof. Since X contains a zero it follows that Min(X) is a single point, and

so Lemma 3 of [W2] shows that X is connected.

Now suppose x e X - A(X). Then L(x) is a compact, order dense POTS,

which is actually a chain. Furthermore, Min(L(x)) = {e} . It follows from

Lemma 3 of [W2] that L(x) is connected. This implies that X - A(X) is

connected since

X-A(X)=      (J      L(x),
xex-A(X)

each L(x) is connected, and they all have the point e in common.

We are now ready for the theorem which characterizes Peano continua order

theoretically.

Theorem 3.14. Let X be a compact metric space. Then X is a Peano continuum

if and only if X admits partial order <, and A(X) c Max(X) satisfying the

following conditions:

(i)   < is order dense,

(ii)   < is continuous,
(iii)   X contains a zero, and if x e X - A(X), then L(x) is a chain,

(iv)   X - A(X) is rim-compact,

(v)   M(x) - ({x} U A(X)) is an open subset of X - A(X) for each x in
X-A(X).

Proof. Suppose I is a Peano continuum. Then X = cf>(D) where D is a

dendrite and 0 is a map such that <(>\d-e(D) is one-to-one. Define <d as in

Theorem 3.12, and let A(X) = {x : \^~l(x)\ > 1}. Then Theorem 3.12 shows
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that <d is a continuous, order dense partial order satisfying condition (iii)

and that A(X) c Max(X). Furthermore, Lemma 3.4 shows that X - A(X) is

regular and therefore rim-compact. Also, if x 6 X — A(X), then |r/>_1(.x)| = 1

and M(x) = (f>(M((f>~l(x))) by Lemma 3.8 and so

( * )        M(x) - ({x} U A(X)) = <f>(M(<p-x(x)) - ({0-'(x)} U ri(A(X)))).

Since M((t>~l(x))-{(j>~l(x)} is an open subset of D, it follows that M(cf>~l(x))-

({0_1 (jc)}U0-1 (A(X))) is an open subset of D-cf>~i(A(X)). It is easy to check
that (^\d-¡¡>-'(a(x)) is a homeomorphism of D - <p~x(A(X)) onto X - A(X).

Therefore, (*) shows that M(x) - ({x} UA(X)) is an open subset of X - A(X)

so that condition (v) of the theorem is satisfied.

For the converse, suppose that X admits a partial order < and A(X) c

Max(X) satisfying conditions (i)-(v). Then condition (iii) and Lemma 3.13

guarantee that X and X - A(X) are connected.

It is a straightforward check that the partial order < when restricted to the

space X - A(X), satisfies the following conditions:

(a) < is order dense,

(b) if x e X - A(X), then M(x) is closed in X - A(X),
(c) if x e X - A(X) then M(x) - {x} is open in X - A(X),

(d) if x # y, then L(x) - {x} / L(y) - {y} .

By Theorem 11 in [W6], these conditions imply that X - A(X) is dendritic.

Furthermore, condition (iv) states that X - A(X) is rim-compact.

It is shown in [P] that every rim-compact, dendritic space has a unique den-

dritic compactification. Let D be the unique dendritic compactification of

X - A(X). Note that D is a dendrite since it is a compact dendritic space.

Since X - A(X) is dense in D, and X is a compact metric space, we may
extend the identity map, id : (X - A(X)) c D —> X, to a continuous map

(f> : D —► X. It follows that X is the image under a closed map of the locally

connected space D, and hence X is locally connected. This completes the

proof of Theorem 3.14.
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