COMMUTATOR APPROXIMANTS

P. J. MAHER
(Communicated by Paul S. Muhly)

Abstract

This paper deals with minimizing $\|B-(A X-X A)\|_{p}$, where A and B are fixed, $B \in \mathscr{C}_{p}$, and X varies such that $A X-X A \in \mathscr{C}_{p}$. (Here, \mathscr{C}_{p} denotes the von Neumann-Schatten class and $\|\cdot\|_{p}$ denotes its norm.) The main result (Theorem 3.2) says that if A is normal and $A B=B A$ then $\|B-(A X-X A)\|_{p}, \quad 1 \leq p<\infty$, is minimized if and for $1<p<\infty$ only if, $A X-X A=0$; and that the map $X \rightarrow\|B-(A X-X A)\|_{p}^{p}, 1<p<\infty$, has a critical point at $X=V$ if and only if $A V-V A=0$.

1. Introduction

A well-known result of Halmos [6, Problem 233; 4] says that if A (or B) commutes with $A B-B A$ then

$$
\begin{equation*}
\|\alpha I-(A B-B A)\| \geq\|\alpha I\| . \tag{1.1}
\end{equation*}
$$

The related inequality (1.2) was obtained by Anderson [2, Theorem 1.7] who showed that if A is normal and commutes with B then, for all X in $\mathscr{L}(H)$,

$$
\begin{equation*}
\|B-(A X-X A)\| \geq\|B\| \tag{1.2}
\end{equation*}
$$

In this paper we obtain an inequality similar to (1.2) where the operator norm is replaced by the $\|\cdot\|_{p}$ norm on the von Neumann-Schatten classes \mathscr{C}_{p}, $1 \leq p<\infty$. This inequality, contained in Theorem 3.2(a), says that if the normal operator A commutes with B, where $B \in \mathscr{C}_{p}$, and if X varies such that $A X-X A \in \mathscr{C}_{p}$ then, for $1 \leq p<\infty$,

$$
\begin{equation*}
\|B-(A X-X A)\|_{p} \geq\|B\|_{p} \tag{1.3}
\end{equation*}
$$

with equality occurring, and for $1<p<\infty$ only if $A X-X A=0$. Thus in Halmos' terminology [5] the zero commutator is the commutator approximant in \mathscr{C}_{p} of B.

Additionally, we classify the critical points of the map F_{p}, on $\mathscr{S}=\{X$: $\left.A X-X A \in \mathscr{C}_{p}\right\}$, defined by

$$
F_{p}: X \rightarrow\|B-(A X-X A)\|_{p}^{p}
$$

[^0](that is, we classify $\left\{\mathrm{V}\right.$: the Fréchet derivative $\left.D_{V} F_{p}=0\right\}$). The local result, Theorem 3.2(b), says that under the same hypotheses (A normal and $A B=B A$) V is a critical point of $F_{p}, 1<p<\infty$, if and only if $A V-V A=0$.

Note that $\alpha I-(A X-X A)$ cannot be compact with A and X bounded. (This follows from the Wielandt/Wintner result [9, 10] that a commutator of bounded operators cannot equal the identity. If $\alpha I-(A X-X A)$ were compact, then in the Calkin algebra, the identity would be the commutator of the images of A and X contradicting Wielandt/Wintner in the context of normed algebras with unit.) Hence, in infinite dimensions there is no question of minimizing $\|\alpha I-(A X-X A)\|_{p}$.

2. Preliminaries

Let H denote a separable complex Hilbert space and $\mathscr{L}(H)$ denote the space of all bounded linear operators mapping H into itself. For details of the von Neumann-Schatten classes $\mathscr{\mathscr { C }}_{p}$ and norms $\|\cdot\|_{p}$, see [3, Chapter XI; 8, Chapter 2]. We state below the Aiken, Erdos, and Goldstein differentiation result. The real part of a complex number z is denoted by $\mathscr{R} z$.

Theorem 2.1 [1, Theorem 2.1]. Let the map $\Phi: \mathscr{C}_{p} \rightarrow \mathbb{R}^{+}$be given by $\Phi: X \rightarrow$ $\|X\|_{p}^{p}$. Then
(a) for $1<p<\infty$, the map Φ is differentiable at every X in \mathscr{C}_{p} with derivative $D_{X} \Phi$ given by

$$
\left(D_{X} \Phi\right)(S)=p \mathscr{R} \tau\left[|X|^{p-1} U^{*} S\right]
$$

where τ denotes trace, $X=U|X|$ is the polar decomposition of X, and $S \in \mathscr{C}_{p}$;
(b) for $0<p \leq 1$, provided $\operatorname{dim} H<\infty$, the same result holds at every invertible element X.

$$
\text { 3. On minimizing }\|B-(A X-X A)\|_{p}
$$

The proof of the local result, Theorem 3.2(b), depends on Lemma 3.1, which is a variation of the well-known Kleinecke-Shirokov theorem [6, Problem 232].

Lemma 3.1. Let A be normal and commute with $A V-V A$. Then $A V-V A$ $=0$.

Proof. The proof hinges on the spectral resolution of A. This says that there exists a spectral measure $E(\cdot)$ such that, for each $\varepsilon>0$, there exist disjoint Borel sets $\Delta_{i}, 1 \leq i \leq N$, with the property that

$$
\text { if } \lambda_{i} \in \Delta_{i} \text { and } S=\sum_{i=1}^{N} \lambda_{i} E\left(\Delta_{i}\right) \text { then }\|A-S\|<\varepsilon .
$$

The operator $A V-V A$ commutes with A and hence with each of the spectral projections $E\left(\Delta_{i}\right)$, and so, since $\sum_{i=1}^{N} E\left(\Delta_{i}\right)=E\left(U \Delta_{i}\right)=I$,

$$
\begin{equation*}
A V-V A=(A V-V A) \sum_{i=1}^{N} E\left(\Delta_{i}\right)=\sum_{i=1}^{N} E\left(\Delta_{i}\right)(A V-V A) E\left(\Delta_{i}\right) \tag{1}
\end{equation*}
$$

Since the Borel sets are pairwise disjoint, $E\left(\Delta_{i}\right) E\left(\Delta_{j}\right)$ equals $E\left(\Delta_{i}\right)$ if $i=j$ and is zero if $i \neq j$. Hence on substituting for S, we find that for each (fixed)
i we have $E\left(\Delta_{i}\right)(S V-V S) E\left(\Delta_{i}\right)=0$. So,

$$
\begin{aligned}
\left\|E\left(\Delta_{i}\right)(A V-V A) E\left(\Delta_{i}\right)\right\| & =\left\|E\left(\Delta_{i}\right)[(S V-V S)+(A-S) V-V(A-S)] E\left(\Delta_{i}\right)\right\| \\
& \leq 2\|A-S\|\|V\|\left\|E\left(\Delta_{i}\right)\right\|<2 \varepsilon\|V\| .
\end{aligned}
$$

Since, from (1), $\|A V-V A\|=\sup \left\|E\left(\Delta_{i}\right)(A V-V A) E\left(\Delta_{i}\right)\right\|$, then $A V-V A$ $=0$.

Theorem 3.2. Let A be normal, $A B=B A$, and B be in \mathscr{C}_{p}. Let $\mathscr{S}=\{X$: $\left.A X-X A \in \mathscr{C}_{p}\right\}$ and $F_{p}: \mathscr{S} \rightarrow \mathbb{R}^{+}$be given by

$$
F_{p}: X \rightarrow\|B-(A X-X A)\|_{p}^{p}
$$

Then
(a) for $1 \leq p<\infty$, the map F_{p} has a global minimizer at V if, and for $1<p<\infty$ only if, $A V-V A=0$;
(b) for $1<p<\infty$, the map F_{p} has a critical point at V if and only if $A V-V A=0$;
(c) for $0<p \leq 1$, the map F_{p} has a critical point at V if $A V-V A=0$ provided $\operatorname{dim} H<\infty$ and $B-(A V-V A)$ is invertible.
Proof. (a) The idea is to replace B by the compact, normal operator $|B|$. Let $B=U|B|$ be the polar decomposition of B so that $\operatorname{Ker} U=\operatorname{Ker}|B|$ and $|B|=U^{*} B\left(\in \mathscr{C}_{p}\right)$. Since U is a partial isometry so is U^{*} (so that $\left\|U^{*}\right\|=1$). As $\left\|U^{*} T\right\|_{p} \leq\left\|U^{*}\right\|\|T\|_{p}=\|T\|_{p}$ for arbitrary T in \mathscr{C}_{p}, then

$$
\begin{align*}
\|B-(A X-X A)\|_{p}^{p} & \geq\left\||B|-U^{*}(A X-X A)\right\|_{p}^{p} \\
& \geq \sum_{n}\left|\left\langle\left[|B|-U^{*}(A X-X A)\right] \phi_{n}, \phi_{n}\right\rangle\right|^{p}=\sum, \tag{1}
\end{align*}
$$

say, for an arbitrary orthonormal basis $\left\{\phi_{n}\right\}$ of H (the last inequality following from [8, Lemma 2.3.4]).

Because $A B=B A$ and A is normal, by Fuglede's theorem, we have $A B^{*}=$ $B^{*} A$, and hence $A|B|^{2}=|B|^{2} A$. Moreover, by the functional calculus [8, Theorem 1.7.7(vi)], $A|B|=|B| A$ (and, indeed, $A|B|^{p-1}=|B|^{p-1} A$). Therefore, there exists an orthonormal basis $\left\{\xi_{k}\right\} \cup\left\{\psi_{m}\right\}$ of H such that $\left\{\psi_{m}\right\}$ is an orthonormal basis of $\operatorname{Ker}|B|$ and $\left\{\xi_{k}\right\}$ consists of common eigenvectors of A and $|B|$. (I thank the referee for suggesting this basis.) Hence, $\sum_{k}\langle | B\left|\xi_{k}, \xi_{k}\right\rangle^{p}=\|B\|_{p}^{p}$. As $B^{*} A=A B^{*}$ and $A|B|=|B| A,|B| U^{*} A=$ $A|B| U^{*}=|B| A U^{*}$. In (1), take $\left\{\phi_{n}\right\}=\left\{\xi_{k}\right\} \cup\left\{\psi_{m}\right\}$. If $\phi_{n}=\xi_{k}$, then $\left\langle U^{*} A X \xi_{k}, \xi_{k}\right\rangle=\left\langle A U^{*} X \xi_{k}, \xi_{k}\right\rangle$ and hence, as ξ_{k} is also an eigenvector of the normal operator $A,\left\langle U^{*}(A X-X A) \xi_{k}, \xi_{k}\right\rangle=\left\langle\left(A U^{*} X-U^{*} X A\right) \xi_{k}, \xi_{k}\right\rangle=0$. Thus (1) becomes

$$
\begin{aligned}
\sum & =\sum_{k}\langle | B\left|\xi_{k}, \xi_{k}\right\rangle^{p}+\sum_{m}\left|\left\langle U^{*}(A X-X A) \psi_{m}, \psi_{m}\right\rangle\right|^{p} \\
& \geq \sum\langle | B\left|\xi_{k}, \xi_{k}\right\rangle^{p}=\|B\|_{p}^{p}
\end{aligned}
$$

as desired.
For $1<p<\infty$ the uniqueness assertion follows from the convexity of the set $\mathscr{S}=\left\{X: A X-X A \in \mathscr{C}_{p}\right\}$.
(b) Let V be in \mathscr{S} so that $B-(A V-V A) \in \mathscr{C}_{p}$. Let S be arbitrary subject to the condition that $B-(A(V+S)-(V+S) A) \in \mathscr{C}_{p}$, that is, $S A-A S \in \mathscr{C}_{p}$.

Let $\Psi: X \rightarrow B-(A X-X A)$ and $\Phi: X \rightarrow\|X\|_{p}^{p}$. Then $F_{p}=\Phi \circ \Psi$. As F_{p} is real-valued, the Fréchet derivative of F_{p} at V, denoted by $D_{V} F_{p}$, is given by

$$
\left(D_{V} F_{p}\right)(S)=\lim _{h \rightarrow 0} \frac{F_{p}(V+h S)-F_{p}(V)}{h}
$$

From this it follows that

$$
\begin{equation*}
\left(D_{V} F_{p}\right)(S)=\left(D_{B-(A V-V A)} \Phi\right)(S A-A S) \tag{2}
\end{equation*}
$$

Let V be a critical point of F_{p} so that $\left(D_{V} F_{p}\right)(S)=0$ for all S in \mathscr{S}. Let $B-(A V-V A)=U_{1}|B-(A V-V A)|$ be the polar decomposition of $B-(A V-V A)$. Then from Theorem 2.1 and (2),

$$
\begin{equation*}
0=p \mathscr{R} \tau\left[|B-(A V-V A)|^{p-1} U_{1}^{*}(S A-A S)\right]=p \mathscr{R} \tau[Y(S A-A S)] \tag{3}
\end{equation*}
$$

where $Y=|B-(A V-V A)|^{p-1} U_{1}^{*}$. Take $S=f \otimes g$, where f and g are arbitrary vectors in H. (The rank one operator $x \rightarrow\langle x, f\rangle g$, where $x \in H$, is denoted $f \otimes g$. Note that $\tau[T(f \otimes g)]=\langle T g, f\rangle$, cf. [8, pp. 73, 90].) Then, as $S \in \mathscr{C}_{1}$ (whence $Y S \in \mathscr{E}_{1}$), from the invariance of trace [8, Theorem 2.2.4(iv)] we have $\tau[Y S A]=\tau[A Y S]$. Thus, from (3)

$$
\begin{equation*}
0=\mathscr{R} \tau[(A Y-Y A) S]=\mathscr{R}\langle(A Y-Y A) g, f\rangle \tag{4}
\end{equation*}
$$

Because f and g are arbitrary, $A Y-Y A=0$, that is,

$$
\begin{equation*}
A|B-(A V-V A)|^{p-1} U_{1}^{*}=|B-(A V-V A)|^{p-1} U_{1}^{*} A \tag{5}
\end{equation*}
$$

We claim that if

$$
\begin{equation*}
A|B-(A V-V A)| U_{1}^{*}=|B-(A V-V A)| U_{1}^{*} A \tag{6}
\end{equation*}
$$

then the assertion that $A V-V A=0$ will be proved. For suppose (6) holds. Then taking adjoints and using the polar decomposition of $B-(A V-V A)$ and Fuglede's theorem (which gives $B A^{*}=A^{*} B$), we get $(A V-V A) A^{*}=$ $A^{*}(A V-V A)$. By Fuglede again, we get $(A V-V A) A=A(A V-V A)$. Hence, by Lemma 3.1, $A V-V A=0$.
Proof of (6). Write $Z=|B-(A V-V A)|^{p-1}$. Then (5) says that

$$
\begin{equation*}
A Z U_{1}^{*}=Z U_{1}^{*} A \tag{7}
\end{equation*}
$$

and (6) is the same as $A Z^{1 /(p-1)} U_{1}^{*}=Z^{1 /(p-1)} U_{1}^{*} A$. This will follow by the functional calculus (cf. [7, Theorem 4.1]) from

$$
\begin{equation*}
A Z^{n} U_{1}^{*}=Z^{n} U_{1}^{*} A \tag{8}
\end{equation*}
$$

for the function $f: t \rightarrow t^{1 /(p-1)}, 1<p<\infty$, where $t \in \mathbb{R}^{+} \supseteq \sigma(Z)$ can be approximated uniformly by a sequence $\left(q_{i}\right)$ of polynomials without constant term (for $f(0)=0)$. Thus, (8) will imply that $A q_{i}(Z) U_{1}^{*}=q_{i}(Z) U_{1}^{*}$ and hence that $A Z^{1 /(p-1)} U_{1}^{*}=Z^{1 /(p-1)} U_{1}^{*} A$.

To prove (8) we use induction. We need the following assertion: $A Z=Z A$. To prove this assertion, note that in the polar decomposition of $B-(A V-V A)$ we have $\operatorname{Ker} U_{1}=\operatorname{Ker}|B-(A V-V A)|=\operatorname{Ker} Z$ (by the spectral theorem) so that $\left(\operatorname{Ker} U_{1}\right)^{\perp}=\operatorname{Ran} Z^{-}$. Thus, $U_{1}^{*} U_{1}$, the projection onto $\left(\operatorname{Ker} U_{1}\right)^{\perp}$, satisfies $U_{1}^{*} U_{1} Z=Z$ and hence $Z U_{1}^{*} U_{1} Z=Z^{2}$. Now take adjoints of (7): then $U_{1} Z A^{*}=A^{*} U_{1} Z$ and hence, by Fuglede, $U_{1} Z A=A U_{1} Z$. Then by (7)

$$
A Z^{2}=A Z U_{1}^{*} U_{1} Z=Z U_{1}^{*} A U_{1} Z=Z U_{1}^{*} U_{1} Z A=Z^{2} A
$$

Taking positive square roots of Z^{2} [8, Theorem 1.7.7(vi)] we get $A Z=Z A$. Returning now to (8): for $n=1,(8)$ is just (7); whilst the inductive step is now immediate from $A Z=Z A$.

Conclusion so far: V is a critical point of $F_{p} \Rightarrow A V-V A=0$.
Conversely, let V satisfy $A V-V A=0$. Then $B-(A V-V A)=B$ and so the partial isometries U_{1} and U in the polar decompositions of $B-(A V-V A)$ and B coincide. Thus, $Y\left(=|B-(A V-V A)|^{p-1} U_{1}^{*}\right)=|B|^{p-1} U^{*} \in \mathscr{C}_{1}$. As in part (a), using Fuglede, we have $|B| A U^{*}=|B| U^{*} A$ and $A|B|^{p-1}=|B|^{p-1} A$. Hence, $\operatorname{Ran}\left(A U^{*}-U^{*} A\right) \subseteq \operatorname{Ker}|B|=\operatorname{Ker}|B|^{p-1}$. So,

$$
A Y-Y A=A|B|^{p-1} U^{*}-|B|^{p-1} U^{*} A=|B|^{p-1}\left(A U^{*}-U^{*} A\right)=0
$$

So, as $Y S \in \mathscr{E}_{1}$, then (cf. (4), (3), and (2)) $D_{V} F_{p}(S)=0$ for all S in $\mathscr{L}(H)$.
(c) For $0<p \leq 1$, the finite-dimensionality and invertibility conditions ensure, by Theorem $2.1(\mathrm{~b})$, that F_{p} is differentiable at V. If $A V-V A=0$ then B, and hence $|B|$, is invertible and so $|B|^{p-1}$ exists for $0<p \leq 1$. The proof of the implication, $A V-V A=0 \Rightarrow V$ is a critical point of F_{p}, is now the same as in part (a).

We make some comments.
(i) In Theorem 3.2(a) if $B=A X_{1}-X_{1} A$ for some operator X_{1} then the minimum of $\|B-(A X-X A)\|_{p}$ is 0 . This does not conflict with Theorem 3.2(a) (i.e. (1.3)) because in this case $B=0$; for since the normal operator A commutes with $B\left(=A X_{1}-X_{1} A\right)$ then, by Lemma 3.1, $A X_{1}-X_{1} A=0$.
(ii) The following counterexample shows that Theorem 3.2(a) does not hold if $p<1$. Take $p=\frac{1}{2}$ and $A=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, and $X=\left(\begin{array}{cc}0 & -x \\ x & 0\end{array}\right)$ where a and x are reals such that $0<|a x|<1$. Then $\|B-(A X-X A)\|_{1 / 2}<\|B\|_{1 / 2}$.
(iii) The set $\mathscr{S}\left(=\left\{X: A X-X A \in \mathscr{C}_{p}\right\}\right)$ properly contains \mathscr{C}_{p}, for if $X \in \mathscr{C}_{p}$ then $X \in \mathscr{S}$ and, e.g., $I \in \mathscr{S}$ but $I \notin \mathscr{C}_{p}$. If $A \in \mathscr{C}_{p}$, the conclusions of Theorem 3.2 hold for all X in $\mathscr{L}(H)$.
(iv) The converse in Theorem 3.2(b) can be proved on the basis of the global result: if $A V-V A=0$ then, by Theorem 3.2(a), V is a global minimizer, and hence a critical point, of F_{p}.
(v) The proof in Theorem 3.2(b) of the implication, V is a critical point of $F_{p} \Rightarrow A V-V A=0$, does not work in the $0<p \leq 1$ case because the functional calculus argument involving the function $f: t \rightarrow t^{1 /(p-1)}$, where $0 \leq t<\infty$, is only valid for $1<p<\infty$.
(vi) Finally, Anderson's original result (1.2), in the special case where B is compact, can be obtained similarly to Theorem 3.2(a). (Proof: using the fact that $\|S\| \geq \sup _{\|\phi\|=1}|\langle S \phi, \phi\rangle|$, where $S \in \mathscr{L}(H)$, with the basis $\left\{\phi_{n}\right\}=$ $\left\{\xi_{k}\right\} \cup\left\{\psi_{m}\right\}$ as defined in Theorem 3.2(a), we get

$$
\begin{aligned}
\|B-(A X-X A)\| & \geq \sup _{n}\left|\left\langle\left[|B|-U^{*}(A X-X A)\right] \phi_{n}, \phi_{n}\right\rangle\right| \\
& =\sup _{k, m}\left[\langle | B\left|\xi_{k}, \xi_{k}\right\rangle+\left|\left\langle U^{*}(A X-X A) \psi_{m}, \psi_{m}\right\rangle\right|\right] \\
& \left.\geq \sup _{k}\langle | B\left|\xi_{k}, \xi_{k}\right\rangle=\||B|\|=\|B\| .\right)
\end{aligned}
$$

Acknowledgment

This paper originated as part of my Ph.D. thesis. I would like to thank my supervisor, Dr. J. A. Erdos, for the help he has so freely given. I would also
like to thank the referee for drawing my attention to Anderson's paper and for suggesting a strengthening of my original version of Theorem 3.2(a).

References

1. J. G. Aiken, J. A. Erdos, and J. A. Goldstein, Unitary approximation of positive operators, Illinois J. Math. 24 (1980), 61-72.
2. J. Anderson, On normal derivations, Proc. Amer. Math. Soc. 38 (1973), 135-140.
3. N. Dunford and J. T. Schwartz, Linear operators, Part II, Interscience, New York, 1964.
4. P. R. Halmos, Commutators of operators. II, Amer. J. Math. 76 (1954), 191-198.
5. \qquad Positive approximants of operators, Indiana Univ. Math. J. 21 (1972), 951-960.
6. __, A Hilbert space problem book, 2nd ed., Springer-Verlag, New York, 1974.
7. P. J. Maher, Partially isometric approximation of positive operators, Illinois J. Math. 33 (1989), 227-243.
8. J. R. Ringrose, Compact non-self-adjoint operators, Van Nostrand Rheinhold, London, 1971.
9. H. Wielandt, Ueber die unbeschranktheit der operatoren des quantenmechanik, Math. Ann. 121 (1949), 21.
10. A. Wintner, The unboundedness of quantum-mechanical matrices, Phys. Rev. 71 (1947), 738-739.

School of Mathematics, Middlesex Polytechnic, Trent Park, Bramley Road, London N14 4XS, England

[^0]: Received by the editors March 21, 1990 and, in revised form, January 7, 1991.
 1980 Mathematics Subject Classification (1985 Revision). Primary 47B47, 47A30; Secondary 47B10.

 Key words and phrases. Commutator, von Neumann-Schatten class, Fuglede's theorem, functional calculus.

