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Abstract. This paper deals with minimizing ||fi - (AX — XA)\\P , where A

and B are fixed, B e'Sp , and X varies such that AX — XA € 2p . (Here,

<<op denotes the von Neumann-Schatten class and || • \\p denotes its norm.)

The main result (Theorem 3.2) says that if A is normal and AB = BA then

\\B - (AX - A^4)||p , 1 < p < oo , is minimized if and for 1 < p < oo only if,

AX - XA = 0 ; and that the map X -> \\B - (AX - XA)\\pp , 1 < p < oo , has
a critical point at X:= V if and only if A V - VA = 0 .

1. INTRODUCTION

A well-known result of Halmos [6, Problem 233; 4] says that if A (or B)
commutes with AB - BA then

(1.1) \\aI-(AB-BA)\\ > \\al\\.

The related inequality (1.2) was obtained by Anderson [2, Theorem 1.7] who

showed that if A is normal and commutes with B then, for all X in 2C(H),

(1.2) ||Ä-(^-^)||>||fi||.

In this paper we obtain an inequality similar to (1.2) where the operator

norm is replaced by the || • ||p norm on the von Neumann-Schatten classes fêp ,

1 < p < oo. This inequality, contained in Theorem 3.2(a), says that if the

normal operator A commutes with B, where B e Wp , and if X varies such

that AX - XA e % then, for 1 < p < oo ,

(1.3) \\B-(AX-XA)\\P>\\B\\P

with equality occurring, and for 1 < p < oo only if AX - XA = 0. Thus in

Halmos' terminology [5] the zero commutator is the commutator approximant

in % of B.
Additionally, we classify the critical points of the map Fp, on 5? — {X :

AX - XA e %} , defined by

_ Fp:X^\\B-(AX-XA)\Yp

Received by the editors March 21, 1990 and, in revised form, January 7, 1991.

1980 Mathematics Subject Classification (1985 Revision). Primary 47B47, 47A30; Secondary

47B10.
Key words and phrases. Commutator, von Neumann-Schatten class, Fuglede's theorem, func-

tional calculus.

© 1992 American Mathematical Society

0002-9939/92 $1.00+ $.25  per page

995



996 P. J. MÄHER

(that is, we classify {V: the Fréchet derivative DyFp = 0}). The local result,

Theorem 3.2(b), says that under the same hypotheses (A normal and AB — BA)

F is a critical point of Fp , 1 < p < oo , if and only if A V - VA = 0.
Note that ai - (AX - XA) cannot be compact with A and X bounded.

(This follows from the Wielandt/Wintner result [9, 10] that a commutator of

bounded operators cannot equal the identity. If al-(AX-XA) were compact,

then in the Calkin algebra, the identity would be the commutator of the images

of A and X contradicting Wielandt/Wintner in the context of normed algebras

with unit.) Hence, in infinite dimensions there is no question of minimizing

\\aI-(AX-XA)\\p.

2. Preliminaries

Let H denote a separable complex Hilbert space and S?(H) denote the

space of all bounded linear operators mapping H into itself. For details of

the von Neumann-Schatten classes Wp and norms || • ||p, see [3, Chapter XI;

8, Chapter 2]. We state below the Aiken, Erdos, and Goldstein differentiation

result. The real part of a complex number z is denoted by ¿%z .

Theorem 2.1 [1, Theorem 2.1]. Let the map <P: % -> R+ be given by <P: X ->

\\X\\PP. Then
(a) for 1 < p < oo, the map <P is differentiable at every X in Wp with

derivative Dx$> given by

(Dx4>)(S)=p3>T[\XrxU*S],

where x denotes trace, X — U\X\ is the polar decomposition of X, and S e^p;

(b) for 0 < p < I, provided dim H < oo, the same result holds at every

invertible element X.

3. On minimizing \\B - (AX - XA)\\P

The proof of the local result, Theorem 3.2(b), depends on Lemma 3.1, which

is a variation of the well-known Kleinecke-Shirokov theorem [6, Problem 232].

Lemma 3.1. Let A be normal and commute with AV - VA . Then AV - VA
= 0.

Proof. The proof hinges on the spectral resolution of A . This says that there

exists a spectral measure E(-) such that, for each e > 0, there exist disjoint

Borel sets A,,  1 < / < A, with the property that

N

if kt e A¡ and S = ^ k¡E(A¡) then \\A - S\\< e.
i=i

The operator AV—VA commutes with A and hence with each of the spectral

projections E(A¡), and so, since ^jl, E(A¿) = E(UA¡) — I,

N N

(1)        AV - VA = (AV - VA)Y,E(A¡) = Y^F(A¡)(AV - VA)E(A¡).
i=\ 1=1

Since the Borel sets are pairwise disjoint, E(A¡)E(Aj) equals E(A¡) if i — j

and is zero if i 4 j ■ Hence on substituting for S, we find that for each (fixed)
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i we have E(At)(SV - VS)E(A¡) = 0. So,

\\E(Ai)(AV - VA)E(A,)\\ » \\E(A¡)[(SV -VS) + (A-S)V- V(A - S)]E(Ai)\\

<2\\A-S\\\\V\\\\E(Ai)\\<2e\\V\\.

Since, from (1), \\AV - VA\\ = sup\\E(Ai)(AV - VA)E(A¡)\\, then AV - VA
= 0.   □

Theorem 3.2. Let A be normal, AB = BA, and B be in %. Let S? = {X :
AX - XAe %} and Fp:y ->R+ be given by

Fp:X^\\B-(AX-XA)\\Pp.

Then
(a) for I < p < oo, the map Fp has a global minimizer at V if and for

1 < p < oo only if, A V - VA = 0 ;
(b) for 1 < p < oo, the map Fp has a critical point at V if and only if

AV - VA = 0;
(c) for 0 < p < 1, the map Fp has a critical point at V if AV - VA = 0

provided dim H < oo and B - (AV - VA) is invertible.

Proof, (a) The idea is to replace B by the compact, normal operator \B\. Let

B = U\B\ be the polar decomposition of B so that Kerf/ = Ker|5| and

\B\ = U*B(e %). Since U is a partial isometry so is U* (so that \\U*\\ = 1).

As \\U*T\\P < ||t/*|| \\T\\P = \\T\\P for arbitrary T in ^ , then

\\B - (AX - XA)\\» > || |*| - IT (AX - XAWp

(1) > ^|([|5|-c/*(^-^)]^,ça„)|"=^,
«

say, for an arbitrary orthonormal basis {</>„} of H (the last inequality following

from [8, Lemma 2.3.4]).
Because AB = BA and A is normal, by Fuglede's theorem, we have AB* =

B*A, and hence A\B\2 = \B\2A. Moreover, by the functional calculus [8,

Theorem 1.7.7(vi)], A\B\ = \B\A (and, indeed, A\B\p~x = \B\p~xA). There-
fore, there exists an orthonormal basis {£,k} U {y/m} of H such that {ipm}

is an orthonormal basis of Ker|2?| and {£,k} consists of common eigenvec-

tors of A and \B\. (I thank the referee for suggesting this basis.) Hence,

2Zk(\B\Zk,Zk)p = \\B\\PP. As B'A = AB* and A\B\ = \B\A, \B\U*A =
A\B\U* = \B\AU*. In (1), take {</>„} = {4} U {<pm} ■ If 4>n = 4k, then
(U*AX£,k , ¿fc) = (AU*XÇk , 4k) and hence, as £k is also an eigenvector of the

normal operator A , (U*(AX - XA)£k , 4) = ((AU*X - U*XA)£k , &) = 0.
Thus ( 1 ) becomes

£ = ^(|5|4 , 4)p + £ \(U*(AX - XA)Wm , ipm)\P
k m

>£<|Jß|4,4>p = PII£

as desired.
For 1 < p < oo the uniqueness assertion follows from the convexity of the

set S' = {X : AX - XA e %} .
(b) Let V be in 3" so that B-(AV-VA) e % . Let S be arbitrary subject

to the condition that B - (A(V + S) - (V + S)A) e % , that is, SA - AS e % .
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Let ¥: X -» B - (AX - XA) and <I>: X -» pf||£. Then i> = O o »P. As Fp is
real-valued, the Fréchet derivative of Fp at V, denoted by DVFP , is given by

{DrFpKS)=¡¡%^±jf^n.

From this it follows that

(2) (DVFP)(S) = (DB_(AV_VA)<&)(SA - AS).

Let F be a critical point of Fp so that (DVFP)(S) = 0 for all 5 in 5*.

Let B - (AV - VA) = Ux\B - (AV - VA)\ be the polar decomposition of
B - (AV - VA). Then from Theorem 2.1 and (2),

(3) 0 = pMx\\B -(AV - VA)\p-xU¡(SA - AS)] = p3?x[Y(SA - AS)],

where Y = \B - (AV - VA)\p~x [/,*. Take S = f <8> g, where f and g are
arbitrary vectors in H. (The rank one operator x —> (x, f)g, where x e H, is

denoted f®g. Note that x[T(f®g)] = (Tg, f), cf. [8, pp. 73, 90].) Then, as
S 6 9j (whence YS € W\), from the invariance of trace [8, Theorem 2.2.4(iv)]

we have x[YSA] = x[AYS]. Thus, from (3)

(4) 0 = ¿%x[(AY - YA)S] = 31 ((AY - YA)g, f).

Because / and g are arbitrary, AY - Y A = 0, that is,

(5) A\B-(AV - VA)\p~xU* = \B-(AV-VA)\p-xU*A.

We claim that if

(6) A\B-(AV - VA)\U; = \B - (AV - VA)\U;A ,

then the assertion that AV — VA — 0 will be proved. For suppose (6) holds.

Then taking adjoints and using the polar decomposition of B - (AV - VA)

and Fuglede's theorem (which gives BA* = A*B), we get (AV - VA)A* —

A*(AV - VA). By Fuglede again, we get (AV - VA)A = A(AV - VA). Hence,
by Lemma 3.1, AV-VA = 0.

Proof of (6). Write Z = \B-(AV - VA)\p~x . Then (5) says that

(7) AZUx* = ZU*A

and (6) is the same as AZl^~lW^ = Zx^p-xW*A. This will follow by the

functional calculus (cf. [7, Theorem 4.1]) from

(8) AZnU¡ = ZnU*xA;

for the function /: t -» /'/(/>-!), 1 < p < oo, where t e R+ 2 g(Z) can be

approximated uniformly by a sequence (q¡) of polynomials without constant

term (for /(0) = 0). Thus, (8) will imply that Aq¿(Z)U* = qi(Z)Ul* and hence
that AZxKp-x]U* = Zx/(p~xW*A.

To prove (8) we use induction. We need the following assertion: AZ = ZA .

To prove this assertion, note that in the polar decomposition of B-(AV - VA)

we have Ker Ux = Ker|5 - (AV - VA)\ = KerZ (by the spectral theorem) so

that (Ker[/i)1 = RanZ". Thus, UfUx, the projection onto (Kerf/i)-1,

satisfies U*UxZ = Z and hence ZU*UxZ = Z2. Now take adjoints of (7):
then UxZA* = A*\JXZ and hence, by Fuglede, UxZA = AUxZ. Then by (7)

AZ2 = AZUx*UxZ = ZU*xAUxZ = ZU*UXZA = Z2A .
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Taking positive square roots of Z2 [8, Theorem 1.7.7(vi)] we get AZ = ZA.

Returning now to (8): for « = 1 , (8) is just (7); whilst the inductive step is

now immediate from AZ — ZA .

Conclusion so far:   V is a critical point of Fp =$■ A V - VA = 0.
Conversely, let V satisfy AV-VA = 0. Then B - (AV - VA) = B and so

the partial isometries Ux and U in the polar decompositions of B — (A V -VA)

and B coincide. Thus, Y(= \B - (AV - VA)\p~xU*) = \B\p~xU* e Wx . As in

part (a), using Fuglede, we have \B\AU* = \B\U*A and A\B\p~x = \B\p~xA.
Hence, Ran(AU* - U*A) Ç Kex\B\ = Ker|ß|"-' . So,

AY -YA = A\B\p-xU* - \B\p~xU*A = \B\P~X(AU* - U*A) = 0.

So, as YS eWx, then (cf. (4), (3), and (2)) DVFP(S) = 0 for all S in 3f(H).
(c) For 0 < p < 1, the finite-dimensionality and invertibility conditions

ensure, by Theorem 2.1 (b), that Fp is differentiable at V. If AV - VA = 0

then B, and hence \B\, is invertible and so \B\p~x exists for 0 < p < 1. The

proof of the implication, AV - VA = 0 =>• V is a critical point of Fp , is now

the same as in part (a).   □

We make some comments.

(i) In Theorem 3.2(a) if B = AXx - X{A for some operator Xx then the

minimum of \\B - (AX - XA)\\P is 0. This does not conflict with Theorem

3.2(a) (i.e. (1.3)) because in this case B = 0; for since the normal operator A

commutes with B(— AXx - X\A) then, by Lemma 3.1, AXx — XxA = 0.
(ii) The following counterexample shows that Theorem 3.2(a) does not hold

if p < 1. Take p = \ and A = (g°), B = (x0°), and X = (°. "0X) where a

and x axe reals such that 0 < |ax| < 1. Then \\B - (AX - XA)\\x/2 < \\B\\x/2.
(Hi) The set S* (= {X : AX - XA e %}) properly contains %,, for if

X e % then X e S? and, e.g., I e 3" but I i % . If A € % , the conclusions
of Theorem 3.2 hold for all X in 3f(H).

(iv) The converse in Theorem 3.2(b) can be proved on the basis of the global

result: if AV - VA = 0 then, by Theorem 3.2(a), F is a global minimizer, and

hence a critical point, of Fp .

(v) The proof in Theorem 3.2(b) of the implication, F is a critical point of

Fp =$> A V - VA = 0, does not work in the 0 < p < 1 case because the functional

calculus argument involving the function /: t —> /'/(p-1) , where 0 < f < oo, is

only valid for 1 < p < oo .
(vi) Finally, Anderson's original result (1.2), in the special case where B

is compact, can be obtained similarly to Theorem 3.2(a). (Proof: using the

fact that ||5|| > sup||0||=1 \(S<p, <p)\, where S e 3f(H), with the basis {</>„} =

{4} U {ipm} as defined in Theorem 3.2(a), we get

\\B - (AX - XA)\\ > sup |([|fi| - U*(AX - XA)]cpn , <p„)\
n

= sup[(|5|4 , 4) + \{U*(AX - XA)xpm , xpm)\]
k ,m

> sup(|5|4,4) = |||ß||| = ||ß||.)
k
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