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ABSTRACT. This paper deals with minimizing ||B — (4X — X A)||, , where A4
and B are fixed, B € %,, and X varies such that AX — X4 € %, . (Here,
%, denotes the von Neumann-Schatten class and || ¢ ||, denotes its norm.)
The main result (Theorem 3.2) says that if A4 is normal and 4B = BA then
||B—(AX — XA4)||p, 1 <p < oo, is minimized if and for 1 < p < co only if]
AX — XA =0; and that the map X — ||B — (4X — XA)||5, 1 <p < oo, has
a critical pointat X =V ifand only if AV —VA=0.

1. INTRODUCTION

A well-known result of Halmos [6, Problem 233; 4] says that if 4 (or B)
commutes with 4B — BA then

(L.1) llal = (AB — BA)|| 2 [laf]|.

The related inequality (1.2) was obtained by Anderson [2, Theorem 1.7] who
showed that if 4 is normal and commutes with B then, for all X in Z(H),

(1.2) 1B —(AX - XA)|| = ||B]|.

In this paper we obtain an inequality similar to (1.2) where the operator
norm is replaced by the | - ||, norm on the von Neumann-Schatten classes %, ,
1 < p < oo. This inequality, contained in Theorem 3.2(a), says that if the
normal operator 4 commutes with B, where B € %,, and if X varies such
that AX — X4 € &, then, for 1 <p < oo,

(1.3) 1B —(AX — XA, = ||Bllp

with equality occurring, and for 1 < p < oo only if AX — XA = 0. Thus in
Halmos’ terminology [5] the zero commutator is the commutator approximant
in &, of B.

Additionally, we classify the critical points of the map F,, on ¥ = {X :
AX — XA € %}, defined by

Fp: X - ||B—(4X - XA)|5

Received by the editors March 21, 1990 and, in revised form, January 7, 1991.

1980 Mathematics Subject Classification (1985 Revision). Primary 47B47, 47A30; Secondary
47B10.

Key words and phrases. Commutator, von Neumann-Schatten class, Fuglede’s theorem, func-
tional calculus.

(© 1992 American Mathematical Society
0002-9939/92 $1.00 + $.25 per page




996 P.J. MAHER

(that is, we classify {V: the Fréchet derivative Dy F, = 0}). The local result,
Theorem 3.2(b), says that under the same hypotheses (4 normal and AB = BA)
V' is a critical point of F,, 1 <p < oo, if and only if AV —VA4=0.

Note that al — (4X — XA) cannot be compact with 4 and X bounded.
(This follows from the Wielandt/Wintner result [9, 10] that a commutator of
bounded operators cannot equal the identity. If o —(4X —XA) were compact,
then in the Calkin algebra, the identity would be the commutator of the images
of 4 and X contradicting Wielandt/Wintner in the context of normed algebras
with unit.) Hence, in infinite dimensions there is no question of minimizing
laT — (AX — XA)|, .

2. PRELIMINARIES

Let H denote a separable complex Hilbert space and .Z(H) denote the
space of all bounded linear operators mapping H into itself. For details of
the von Neumann-Schatten classes %, and norms | - ||,, see [3, Chapter XI;
8, Chapter 2]. We state below the Aiken, Erdos, and Goldstein differentiation
result. The real part of a complex number z is denoted by #z.

Theorem 2.1 [1, Theorem 2.1]. Let the map ®: &, — Rt be given by ®: X —
| X|[5. Then

(a) for 1 < p < oo, the map ® is differentiable at every X in &, with
derivative Dy® given by

(Dx®)(S) = pZ (| X|P~'U*S],

where T denotes trace, X = U|X| is the polar decomposition of X , and S € %, ;
(b) for 0 < p < 1, provided dimH < oo, the same result holds at every
invertible element X .

3. ON MINIMIZING ||B — (AX — X A)||p

The proof of the local result, Theorem 3.2(b), depends on Lemma 3.1, which
is a variation of the well-known Kleinecke-Shirokov theorem [6, Problem 232].

Lemma 3.1. Let A be normal and commute with AV —VA. Then AV —V A
=0.

Proof. The proof hinges on the spectral resolution of 4. This says that there
exists a spectral measure E(:) such that, for each ¢ > 0, there exist disjoint
Borel sets A;, 1 <i < N, with the property that

N
if ;€A;and S = ZA,E(A,) then |4 -S| <e.
i=1
The operator AV —V A commutes with 4 and hence with each of the spectral
projections E(A;), and so, since Zfil EA)=E(UA) =1,

N N
(1) AV -VA=(AV -VA)> EA) =Y EA)AV - VAE(Q).

i=1 i=1

Since the Borel sets are pairwise disjoint, E(A;)E(A;) equals E(A;) if i =)
and is zero if i # j. Hence on substituting for S, we find that for each (fixed)




COMMUTATOR APPROXIMANTS 997

i we have E(A)(SV - VS)E(A;))=0. So,
|EA)(AV = VAEA)| = |EQA)ISY = VS) +(4-S)V - V(4-S)IEQ)
<2 A4=SIIVIHE@) < 2Vl

Since, from (1), ||[AV — VA|| = sup ||E(A;))(AV — VA)E(A;)||, then AV —V 4
=0. O

Theorem 3.2. Let A be normal, AB = BA, and B bein %,. Let ¥ = {X :
AX — XA € %,} and F,: & — R* be given by

Fp: X — ||B - (4X — XA)[.

Then

(@) for 1 < p < o, the map F, has a global minimizer at V if, and for
l<p<ooonlyif AV -VA=0;

(b) for 1 < p < oo, the map F, has a critical point at V if and only if
AV - VA=0;

(c) for 0 < p <1, the map F, has a critical point at V if AV —VA=0
provided dim H < oo and B — (AV — V A) is invertible.

Proof. (a) The idea is to replace B by the compact, normal operator |B|. Let
B = U|B| be the polar decomposition of B so that KerU = Ker|B| and
|B| = U*B(€ %,) . Since U is a partial isometry so is U* (so that ||[U*||=1).
As ||U*T|, < {U*IT|l, = IT||, for arbitrary T in %,, then

1B — (AX — XA)| > |||B| — U*(AX - XA)|2
(1) > S [IIBl - U*(4X = XA)lgn, o)l =,

say, for an arbitrary orthonormal basis {¢,} of H (the last inequality following
from [8, Lemma 2.3.4]).

Because AB = BA and A is normal, by Fuglede’s theorem, we have AB* =
B*A4, and hence A|B|> = |B|*>4A. Moreover, by the functional calculus [8,
Theorem 1.7.7(vi)], 4|B| = |B|4 (and, indeed, A|B|?~! = |B|?~'4). There-
fore, there exists an orthonormal basis {&} U {w,,} of H such that {yp}
is an orthonormal basis of Ker|B| and {} consists of common eigenvec-
tors of A and |B|. (I thank the referee for suggesting this basis.) Hence,
Si{IBIE, &) = |IBI}. As B*A = AB* and A|B| = |B|4, |B|U*4 =
A|B|U* = |B|AU*. In (1), take {¢n} = {&} U {wm}. If ¢, = &, then
(U*AXE, &) = (AU*X¢&;, &) and hence, as & is also an eigenvector of the
normal operator A, (U*(AX — XA),, &) = (AU*X — U*XA),, &) = 0.
Thus (1) becomes

> =S TUBIE &)+ Y HU(AX = X AW, Ym)I?
k m
> ST(BE, &) = 1Bl

as desired.

For 1 < p < oo the uniqueness assertion follows from the convexity of the
set ' ={X:4X-XA€%}.

(b) Let V bein % sothat B—(AV —V A) € &,. Let S be arbitrary subject
to the condition that B — (A(V +S)—(V +S)A) € &, , thatis, SA—-AS € &,.
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Let ¥: X > B—(AX - XA) and ®: X — ||X||f. Then F, =®Po¥. As F, is
real-valued, the Fréchet derivative of F, at V', denoted by Dy F,, is given by

(DyFy)(S) = lim 20X IRLY

From this it follows that
(2) (Dy F3)(S) = (Dp—(av-v4)P)(SA — AS).
Let V be a critical point of F, so that (DyF,)(S) =0 for all S in .

Let B — (AV — VA) = U,|B — (AV — V A)| be the polar decomposition of
B — (AV — V A). Then from Theorem 2.1 and (2),

(3)  0=pRt[|B - (AV — VAP~1U}(SA — AS)] = pR1[Y(SA — AS)],

where Y = |B — (AV — VA)|P~'U;. Take S = f® g, where f and g are
arbitrary vectors in H . (The rank one operator x — (x, f)g, where x € H, is
denoted f® g. Note that [T (f®g)]=(Tg, f), cf. [8, pp. 73, 90].) Then, as
S € % (whence YS € %), from the invariance of trace [8, Theorem 2.2.4(iv)]
we have t[YSA] = 1[AYS]. Thus, from (3)

4) 0=F1[(AY = YA)S]=F{((AY - YA)g, f).

Because f and g are arbitrary, AY — YA =0, that is,

(5) A|B = (AV = VA)P~'U; = |B - (AV - VAU A.
We claim that if

(6) A|B — (AV = VA)|U; = |B - (AV -V A)|Ur 4,

then the assertion that AV — V4 = 0 will be proved. For suppose (6) holds.
Then taking adjoints and using the polar decomposition of B — (AV — V A)
and Fuglede’s theorem (which gives BA* = A*B), we get (AV — VA)A* =
A*(AV — V A). By Fuglede again, we get (AV —V A)A = A(AV —V A). Hence,
by Lemma 3.1, AV - VA=0.

Proof of (6). Write Z = |B — (AV — V A)|P~!. Then (5) says that
7 AZU = ZUr A

and (6) is the same as AZY/(P-Dyy = ZVP-NUr4. This will follow by the
functional calculus (cf. [7, Theorem 4.1]) from

(8) AZ"U} = Z"Uy A,

for the function f:t — t'/?=1) 1 < p < 0o, where t € Rt D g(Z) can be
approximated uniformly by a sequence (g;) of polynomials without constant
term (for f(0) = 0). Thus, (8) will imply that A¢;(Z)U} = q;(Z)U; and hence
that AZVP-Dyy = ZV/e-Dyr4.

To prove (8) we use induction. We need the following assertion;: AZ =ZA4.
To prove this assertion, note that in the polar decomposition of B—(AV —V A)
we have KerU, = Ker|B — (AV — VA)| = Ker Z (by the spectral theorem) so
that (KerU;): = RanZ~. Thus, U;U;, the projection onto (KerU;)*,
satisfies UyU,Z = Z and hence ZU;U,Z = Z?. Now take adjoints of (7):
then U,ZA* = A*U,Z and hence, by Fuglede, U;ZA4 = AU,Z . Then by (7)

AZ? = AZU}U\Z = ZUF AU\ Z = ZU U\ ZA = Z%A.
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Taking positive square roots of Z?2 [8, Theorem 1.7.7(vi)] we get AZ = ZA.
Returning now to (8): for n = 1, (8) is just (7); whilst the inductive step is
now immediate from AZ =ZA.

Conclusion so far: V' is a critical point of F, = AV - VA =0.

Conversely, let V' satisfy AV —VA=0. Then B— (AV —V A) = B and so
the partial isometries U; and U in the polar decompositions of B—(AV —V A)
and B coincide. Thus, Y(= |B — (4V — VA)P~'U}) = |[BP~'U* € & . Asin
part (a), using Fuglede, we have |B|AU* = |B|U*4 and A|BP~! = |B]P~'4.
Hence, Ran(4U* — U*A4) C Ker |B| = Ker|B|P~!. So,

AY — YA =A|BP7'U* — |BP~'U*4 = |BP"1(AU* - U*4) = 0.

So, as YS € &, then (cf. (4), (3), and (2)) Dy F,(S) =0 forall S in Z(H).

(c) For 0 < p < 1, the finite-dimensionality and invertibility conditions
ensure, by Theorem 2.1(b), that F, is differentiable at V. If AV - VA =0
then B, and hence |B|, is invertible and so |B|P~! exists for 0 < p < 1. The
proof of the implication, AV — VA4 =0 =V is a critical point of F,, is now
the same as in part (a). O

We make some comments.

(i) In Theorem 3.2(a) if B = AX; — X; A for some operator X; then the
minimum of ||B — (4X — XA)||, is 0. This does not conflict with Theorem
3.2(a) (i.e. (1.3)) because in this case B = 0; for since the normal operator A4
commutes with B(= AX; — X1 4) then, by Lemma 3.1, 4X; — X;4=0.

(i1) The following counterexample shows that Theorem 3.2(a) does not hold
if p<1.Take p=1 and 4= (85), B=(}9),and X = (27F) where a
and x are reals such that 0 < |ax| < 1. Then ||B — (4X — XA)|1/2 < ||Bll1/2-

(iii) The set & (= {X : AX — X4 € &,}) properly contains %, , for if
X €%, then X € % and,eg., [ € ¥ but I ¢ §,. If A€ &,, the conclusions
of Theorem 3.2 hold for all X in & (H).

(iv) The converse in Theorem 3.2(b) can be proved on the basis of the global
result: if A4V —V A =0 then, by Theorem 3.2(a), V is a global minimizer, and
hence a critical point, of F,.

(v) The proof in Theorem 3.2(b) of the implication, V' is a critical point of
F, = AV -V A =0, does not work in the 0 < p <1 case because the functional
calculus argument involving the function f: ¢ — ¢t/(?=1) where 0 <t < o, is
only valid for 1 < p < c0.

(vi) Finally, Anderson’s original result (1.2), in the special case where B
is compact, can be obtained similarly to Theorem 3.2(a). (Proof: using the
fact that ||S]| > supjg =1 [(S#, #)|, where S € Z(H), with the basis {¢n} =
{&} U {wm} as defined in Theorem 3.2(a), we get

IB = (AX = XA)|| > sup ({[|B| — U*(AX = XA)pn, bn)l
= zup[(lBIék, k) + (U (AX = XA)Ym , ¥m)l]

sgp(lBlék » &) = [l1BIII=1BI.)

vV
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