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MAXIMAL IDEALS IN LAURENT POLYNOMIAL RINGS

BUDH NASHIER

(Communicated by Louis J. Ratliff, Jr.)

Abstract. We prove, among other results, that the one-dimensional local do-

main A is Henselian if and only if for every maximal ideal M in the Laurent

polynomial ring A[T, T~l], either M n A[T] or M C\ A[T~^\ is a maximal

ideal. The discrete valuation ring A is Henselian if and only if every pseudo-

Weierstrass polynomial in A[T] is Weierstrass. We apply our results to the

complete intersection problem for maximal ideals in regular Laurent polyno-

mial rings.

1. Introduction

Let A be a commutative Noetherian ring with identity. Let R denote the

Laurent polynomial ring A[Xx , ... , X„, Fi, Yx~~x, ... , Ym, Y~x], where X¡

and y, are distinct indeterminates over A. Let M be a maximal ideal in

R. Let

Mx=MnA[Xx,...,Xn,Yx,...,Ym]

and
M2 = MnA[Xx,...,Xn,Yx-x,..., Y~x].

The content of this paper is the investigation of the following question.

Question. When is Mx or M2 a maximal ideal? In other words, when do

maximal ideals in R come from maximal ideals in A[X{, ... , Xn, Yx, ... , Ym]

or A[Xx,...,Xn,Yx-x,...,Y-xr.

We provide a complete answer to this question. With the above setup of

notations, we prove that for every maximal ideal M in R, Mx or M2 is a

maximal ideal if an only if A/P is a Henselian ring for every G-ideal P in

A. As a consequence, we prove that the one-dimensional local domain A is

Henselian if and only if for every maximal ideal M in the Laurent polynomial

ring A[T, T-1], either MV\A[T] or MC\A[T~X] is a maximal ideal, and thus

we answer a question suggested in [12, Remark, p. 689].

Since a quotient of a Henselian ring is Henselian, it follows that if A is

Henselian then for every maximal ideal M in R, either Mx or M2 is maximal.

Abhyankar, Heinzer, and Wiegand [1] have produced an example of a non-

Henselian ring A such that A/P is Henselian for every G-ideal P in A.

Received by the editors October 5, 1990 and, in revised form, January 10, 1991.

1980 Mathematics Subject Classification (1985 Revision). Primary 13B25, 13F20, 13J15.

©1992 American Mathematical Society

0002-9939/92 $1.00+ $.25 per page

TO 7



908 BUDH NASHIER

For terminology my standard source is Nagata [10]. All the rings we consider

are commutative Noetherian with identity. The dimension of a ring means the

Krull dimension, and all rings are assumed to have finite dimension.

2. Preliminaries

Let us recall that in the ring A a prime ideal P is called a G-ideal if P is

the contraction of a maximal ideal in the polynomial ring A[T] (see [8]). It is

well known (and is easy to prove) that a prime ideal P in A is a G-ideal if

and only if A/P is a semilocal domain of dimension < 1. The ring A is, by

definition, a Hubert ring if every G-ideal in A is maximal. Finitely generated

algebras over Hubert rings are Hubert rings. Thus, in the case when A is a
Hubert ring, we observe that both M\ and M2 are maximal ideals.

Let P = M n A . A generalized version of a theorem of Artin and Täte [2,

Theorem 4] amounts to the following: If B is a Noetherian domain such that

some finitely generated B-algebra is a semilocal domain of dimension < 1, then

B is semilocal of dimension < 1 For a proof of this statement, see [6, 15.1].

In the situation under consideration, we have that the field R/M is a finitely

generated (^4/P)-algebra, so we conclude that A/P is a semilocal domain of

dimension < 1. Hence P is a G-ideal.
The following couple of theorems are crucial to the proofs of our main results.

Theorem A [12, Theorem 2.2]. Let A be a local domain of dimension one. Then

A is Henselian if and only if A' (the derived normal ring of A) is a discrete

valuation ring such that if f £ A'[T] is an irreducible polynomial of degree > 1,

then either f is monk or /(0) is a unit in A'.

Lacking a proper reference, I choose to give a proof of the following needed

result. Recall that a ring A is said to satisfy the first chain condition for prime

ideals if every maximal chain of prime ideals in A has length equal to the
dimension of A [10, p. 123].

Theorem B. Let A be a Noetherian domain of dimension d. Assume that

A satisfies the first chain condition for prime ideals. Let R be the Laurent

polynomial ring A[Xx, ... , X„, Y\, Yx~x, ... , Ym, Y~x]. Then the height of
every maximal ideal in R is d + n + m ord + n + m-l.

Proof. Let M be a maximal ideal in R and P = M n A. If P is a
maximal ideal in A, then M/PR is a maximal ideal in the affine domain

(A/P)[XX, ... , Xn , 7i, y,"', ... , Ym, 7-1] over the field A/P. Hence
ht(M/PR) = n + m . By assumption, ht(P) — d. Thus it follows that M has
height d + n + m . If P is not maximal then dim(A/P) = 1 . By the assumption

that A satisfies the first chain condition for prime ideals, we have ht(P) = d-1.

M / PR is a maximal ideal in the domain (A/P)[Xx, ... , Xn,Y\,Yx~x, ... ,

Ym, Y~x] suchthat (M/PR)n(A/P) = (0). Going through the quotient field of
A/P, we observe that ht(M/PR) = n+m . Then, ht(M) > ht(P)+ht(M/PR) =
d - I + n + m . On the other hand, let us observe that for any prime ideal Q

in R, ht(Q) < ht(Q C\A) + n + m. Hence ht(M) = d - 1 + n + m .
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3. The main results

We first prove a simple lemma.

Lemma 1. Let A —> B be an integral extension of domains. Then for every maxi-

mal ideal M in the ring A[X{, ... , X„, Yx, Yx~x, ... , Ym, Y~x], either Mx =

MHA[Xx, ... , Xn , Yx, ... , Ym] or M2 = MnA[Xt, ... , Xn, Y~x, ... , Y~x]

is a maximal ideal if and only if for every maximal ideal N in the ring

B[Xx ,...,Xn,Yx,Yx-x,...,Ym,Y-x], either M = N n B[XX ,...,Xn,Yx,

... , Ym] or N2=  NnB[Xx, ... , X„, Yx~x, ... , Y~x] is a maximal ideal.

Proof. We only prove one part leaving the other for the reader. Let us assume

that either Mx or M2 is maximal for every maximal ideal M. Let N be

a maximal ideal in B[X\, ... , Xn,Y\, Yx~x, ... ,Ym, Y~x]. Let M = N n

A[Xx, ... , X„, Yx, Yx~x, ... , Ym, Y~x]. Without loss of generality, we assume

that Mx = M n A[Xx, ... , Xn,Y\, ... , Ym] is a maximal ideal. Let N\ =
Nf)B[X\, ... , Xn,Y\, ... , Ym]. We show that Nx is a maximal ideal. Observe

Mx = NxHA[Xx ,...,X„,Yx,...,Ym]. Since B[XX, ... , X„,Y{, ... ,Ym] is
integral over A[Xx, ... , X„ , Yx, ... , Ym] and the prime ideal Nx contracts

to the maximal ideal Mx of A[X\, ... , Xn , Y\, ... , Ym], we have that TYi is
maximal.

We now prove

Theorem 1. Let A be a ring such that A/P is a Henselian ring for every

G-ideal P in A. Let M be a maximal ideal in the Laurent polynomial

ring R = A[X\, ... , X„,Yx,Y~x, ... ,Ym,Y~x]. Then either M\ = M n

A[Xx,...,X„,Yx,...,Ym] or M2 = M n A[Xt , ... , Xn , Y~x, ... , Y~x] is

a maximal ideal.

Proof. Let P — M n A. The first reduction is that we go modulo P, and

assume that M n A = (0). Then A is a semilocal domain of dimension < 1 .

If dim(^4) = 0 then A is a field, and we have that both Mx and M2 are
maximal ideals. So, we assume that dim(A) — 1 . Using the given hypothesis,

we have that A is a Henselian local domain.

We now proceed by induction on m. Let A' denote the derived normal

ring of A. Since A is a Henselian local domain of dimension one, A' is a

Henselian discrete valuation ring. By Lemma 1, we may pass onto A' to prove

the theorem. Thus, we assume that A is a Henselian discrete valuation ring

with % £ A as a uniformizing parameter. By virtue of Theorem B, we have

that ht(./Vi) = 1+AA + AAA or n + m. Since M n A = (0), it is the case that

ht(Af) = n + m. We note that ht(Afi) = ht(Af2) = n + m. Set Y = y, .
Let Q = M n A[Y] = Mx n A[Y]. Then Q is a prime ideal of height one in
A[Y], and M\/Q is a prime ideal of height n + m - I in the polynomial ring

(A[Y]/Q)[Xx,...,X„,Y2,..., Ym\.
If Q is a maximal ideal then we observe that Mx/Q is a maximal ideal.

Hence Mx is a maximal ideal. Suppose that Q is not a maximal ideal. Since

A[Y] is a unique factorization domain, we have that Q = (f), where / is an

irreducible polynomial in A[Y]. By Theorem A, either / is monic or f(0)

is a unit in A. Changing A[Y] to ^[y_1], if necessary, there is no loss of

generality in assuming that / is a monic polynomial in A[Y].

Case (i).    /(0) £ nA.   Let f = Y' + axY'~x + •■■ + a,.   Since / is an
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irreducible monic polynomial in A[Y] with at = f(0) £ nA and (A, n) is a

Henselian discrete valuation ring, we must have that each a¡ £ nA ; otherwise

/ modulo nA would factor as a product of two comaximal monies yielding a

nontrivial factorization of / in A[Y].  Let Q' = M n A[Y~X]. Then Q is
generated by g = 1 + ax T-\-\-atT', where T = Y~x . At this point, we make

the observation that g is not contained in any maximal ideal of height two in

^4[y_l] ; this is because any maximal ideal of height two in ^4[y-1] contains

n, and thus it is co-maximal to g. Thus we have that Q' is a maximal ideal

in ^4[y_1]. By an argument similar to the one given earlier, we conclude that

M2 is a maximal ideal.

Case (ii). /(0) 0 nA . Then (/, Y) = A[Y], and / is monic in Y . Hence

we have that the integral domain Ax = A[Y]/fA[Y] = A[Y, Y~x]/fA[Y, Y~x]
is an integral extension of A . Since A is a Henselian domain of dimension one,

we have that Ax is a Henselian domain of dimension one [10, 43.13]. We go

modulo fA[Y, Y~x] and obtain that M' = M/fA[Y, Y~x] is a maximal ideal

in Ax[Xx, ... , X„, Y2, Y2X, ... ,Ym, Y~x]. By induction on m , either Mt, =

M'nAx[Xx, ... , X„,Y2, ... , Ym] or M4 = M'nAx[Xx,... ,Xn, Y2-x,... ,Y~X]
is a maximal ideal.

Let us note that Mx/fA[Y] = Mx/Q = M3 and MA = M2/Q'. Conse-
quently, Mx or M2 is a maximal ideal. The proof is complete.

To establish the converse of Theorem 1, we need the following lemma.

Lemma 2. Let A be a one-dimensional semilocal domain. Assume that for every

maximal ideal M in the Laurent polynomial ring A[T, T~x], either MC\A[T]

or M r\A[T~x] is a maximal ideal. Then the derived normal ring of A is local;

in particular, A is local.

Proof. Let us assume that A', the derived normal ring of A , is not local.

Since A is a one-dimensional Noetherian semilocal domain, A' is a semilocal

Dedekind domain [10, 33.2, 33.10]. Hence A' is a principal ideal domain with
only a finite number of prime ideals [14, p. 12]. Let pi, Pi, ... , pr be all the

distinct (nonassociate) primes in A'. By assumption we have r > 1. Let ao —

Pxp2 ---Pr.  For each i = 1, 2, ... , r, let a,■ = pxp2 ■ ■ -p¡-xPi+x  ■Pr-  In the

polynomial ring A'[T], set f = ao + axT-\-YarTr. By Eisenstein's criterion,

/ is an irreducible polynomial in A'[T]. Since fA'[T] is not a maximal ideal,

any maximal ideal in A'[T] containing fA'[T] will have height two. Then such

a maximal ideal must contain some p¡ and hence T. So the maximal ideals

in A'[T] that contain fA'[T] are precisely (p¡, T), i — 1, 2, ... , r. Hence

M = fA'[T, T~x] is a maximal ideal in A'[T, T~x], and we have that neither

MV\A'[T] nor MnAJT'1] is a maximal ideal. By letting P = MnA[T, T~x],
we observe that P is a maximal ideal in A[T, T~x] such that its contractions

to A[T] and yl[r_1] are not maximal, a contradiction. Hence A' is local.

We now prove

Theorem 2. Let A be a ring such that for every maximal ideal M in the Laurent

polynomial ring A[Xx, ... , X„, Yx, Yfl, ... , Ym, Y~x], either Mi = Mn

A[Xx ,...,Xn,Yx,...,Ym] or M2 = Mn A[XX , ... , X„ , Y~x, ... , Y~x] is

a maximal ideal. Then A/P is a Henselian ring for every G-ideal P in A.

Proof. Let P be a  G-ideal in A.   If P  is maximal then A/P  is trivially
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Henselian. So we assume that P is not maximal. Then A/P is a one-dimen-

sional semilocal domain. Note that the hypothesis in the statement of the the-

orem remains valid when we replace A by A/P (pay attention to only the

maximal ideals containing P). So we replace A by A/P and then prove that

A is Henselian. By Lemma 2, A is local. To prove that A is Henselian, it

suffices to prove that every domain B that is an integral extension of A is

quasilocal [10, 43.12]. This is equivalent to proving that any domain B that is

a finite ^4-module is local. Let B be a domain that is a finite ^-module. By

Lemma 1, B enjoys the hypothesis assumed for A . By Lemma 2, B is local.

Hence A is Henselian.

Since the zero ideal is a G-ideal in a local domain of dimension one, we have

Corollary 1. Let A be a one-dimensional local domain. Then A is Henselian

if and only if every maximal ideal in the Laurent polynomial ring A[T, T~x]

contracts to a maximal ideal in A[T] or to a maximal ideal in A[T~X].

Heinzer, Lantz, and Wiegand have independently proved Corollary 1.

4. APPLICATIONS

Let (A,J?) be a quasi-local ring. In [12] we defined a polynomial / in

A[T] to be pseudo-Weierstrass if (Jf, T) is the only maximal ideal in A[T]

that contains /.

Let (A, ./#) be a quasi-local ring. A monic polynomial / £ A[T] is called a

Weierstrass polynomial if / = T" + ax Tn~x + ■ ■ ■ + a„ , where each a¡ € Jt.

Clearly a Weierstrass polynomial is pseudo-Weierstrass. If A is a local do-

main of dimension at least two, then pseudo-Weierstrass polynomials in A[T]

are precisely the Weierstrass ones, as was proved in [12, Proposition 3.1]. Let

(A, n) be a discrete valuation ring such that the polynomial f = nT2 + T + n

is irreducible in the polynomial ring A[T]. Then (n , T) is the only maximal

ideal in A[T] that contains /. Hence / is a pseudo-Weierstrass polynomial

that is not Weierstrass. So, in the case of a discrete valuation ring, when is

every pseudo-Weierstrass polynomial Weierstrass? In [12, Theorem 3.6] it was

proved that if A is a discrete valuation ring, then every pseudo-Weierstrass

polynomial in A[T] is Weierstrass if and only if every maximal ideal in the

Laurent polynomial ring A[T, T~x] contracts to a maximal ideal in A[T] or

in A[T~X]. Thus a combination of Corollary 1 and [12, Theorem 3.6] gives us

the following.

Al. Let A be a discrete valuation ring. Then every pseudo-Weierstrass polyno-

mial in A[T] is Weierstrass if and only if A is Henselian.

Let 7 be an ideal in a ring R . We say that 7 is a complete intersection ideal

if it can be generated as an 7?-module by ht(7) elements. A Noetherian ring R

is called strongly regular if every maximal ideal of 7? is a complete intersection

ideal [6, p. 148]. In [5, Theorem 2] it was shown that a polynomial extension

of a regular Hubert domain is strongly regular. Thus we have

A2. A Laurent polynomial extension of regular Hubert domain is strongly regu-

Regular Hilbert domains exist in abundance. The rings of polynomial func-

tions on nonsingular algebraic varieties are classical examples of such domains.
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A really interesting way to get examples of regular Hubert domains is the

following. Start with a Noetherian ring A . Let A[T] be the polynomial ring

in one indeterminate over A, and let A(T) denote the localization of A[T]

at the multiplicative set of all monic polynomials. Then A(T) is a Hubert
ring. This result was the content of [4]. A very easy and nice way (following a

suggestion of J. T. Stafford) to see this is as follows. Set Y = l/T. Let S be

the multiplicative set 1 + y^[y] in A[Y]. Throw Y in the Jacobson radical

by forming the ring B = S~XA[Y]. It is easy to verify that A(T) = B[l/ Y] ; for
details, see [9, p. 99]. Now the fact that A{T) is a Hilbert ring is a consequence

of the following beautiful application [7, 10.5.8] of the Principal Ideal Theorem
of Krull: Let B be a Noetherian ring, and let a be a nonnilpotent element in

the Jacobson radical of B. Then B[l/a] is a Hilbert ring. Thus if we start with

a regular ring A , then we have that A{T) is a regular Hilbert domain. Let us

now record the following.

A3. If A is a regular ring then A(T)[X{, ... , X„,Yx,Yx~x, ... ,Ym, Y~x],
with n + m > 1, is a strongly regular ring.

For A3, if A is a regular locality (localization at a regular prime ideal of

an affine algebra over a field) with infinite residue field or if A is a formal

power series ring over a field, then n + m may be zero; this was proved in [13].

It is not known whether A(T) is a strongly regular ring for any regular local

ring A.
Let A be a Henselian local ring such that polynomial extensions of A are

strongly regular (consequently, A is a regular local ring). Then using Theorem

1, we have that Laurent polynomial extensions of A are also strongly regular.

For instance, it is known that if A is a formal power series ring with coefficients

in a field, then any polynomial extension of A is a strongly regular ring [3,

Theorem 3.1; 11, Theorem 2.2]. Thus, we have

A4 (cf. 15, Theorem 2.8). Let A = k[[Tx, ... , Td]], where k is afield. Then

the Laurent polynomial ring A[Xx, ... , Xn, Yx, Yx"x, ... , Ym, Y~x] is strongly

regular.

Acknowledgment

I express my sincere thanks to Professor Sylvia Wiegand. Her interest in this

work inspired me to obtain a complete answer to the question in the introduc-

tion.

References

1. S. S. Abhyankar, W. Heinzer, and S. Wiegand, On the compositum of two power series rings

Proc. Amer. Math. Soc. 112 (1991), 629-636.

2. E. Artin and J. Täte, A note on finite integral extensions, J. Math. Soc. Japan 3 (1951),

74-77.

3. S. M. Bhatwadekar, A note on complete intersections, Trans. Amer. Math. Soc. 270 (1982),

175-181.

4. J. W. Brewer and W. Heinzer, R Noetherian implies R(X)  is a Hilbert ring, J. Algebra 67

(1980), 204-209.
5. E. D. Davis and A. V. Geramita, Efficient generation of maximal ideals in polynomial rings,

Trans. Amer. Math. Soc. 231 (1977), 497-505.



MAXIMAL IDEALS IN LAURENT POLYNOMIAL RINGS 913

6. A. V. Geramita and C. Small, Introduction to homological methods in commutative rings,

2nd ed., Queen's Papers in Pure and Appl. Math., vol. 43, Queen's Univ., Kingston, Canada,

1979.

7. A. Grothendieck, Éléments de géométrie algébrique. IV, Inst. Hautes Études Sei. Publ. Math.

28(1966).

8. I. Kaplansky, Commutative rings, revised ed., Univ. of Chicago Press, Chicago, 1974.

9. T. Y. Lam, Serre's conjecture, Lecture Notes in Math., vol. 635, Springer-Verlag, Berlin,

Heidelberg, and New York, 1978.

10. M. Nagata, Local rings, Interscience, New York, 1962.

11. B. Nashier, Efficient generation of ideals in polynomial rings, J. Algebra 85 ( 1983), 287-302.

12. _, Henselian rings and Weierstrass polynomials, Proc. Amer. Math. Soc. 112 (1991),

685-690.

13. _, Strongly regular rings, J. Algebra 137 (1991), 206-213.

14. J.-P. Serre, Local fields, Graduate Texts in Math., vol. 67, Springer-Verlag, Berlin, Heidel-

berg, and New York, 1979.

15. P. L. N. Varma, Efficient generation of zero dimensional ideals in polynomial and Laurent

polynomial rings, Ph.D. dissertation, Univ. of Hyderabad, Hyderabad, 1990.

Department of Mathematics, Florida State University, Tallahasee, Florida 32306


