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ON THE ROSENTHAL COMPACTA AND ANALYTIC SETS

ADAM KRAWCZYK

(Communicated by Andreas R. Blass)

Abstract. We consider pointwise convergence in a separable Rosenthal com-

pactum. The main result is that if X C R" is a Rosenthal compactum,

Y c X is countable dense and x € X , then the following are equivalent :

(i)  Y has a countable base at x .

(ii) {(y¡) £ Ya '■ lim,-,oo^¡ = *} 's analytic, when Y has the discrete

topology.

1. Introduction

In the paper we will deal mainly with analytic spaces, i.e., continuous images

of the Baire space.  The class of analytic sets will be denoted by £, .  When

X, Y axe topological spaces then, throughout this paper, X is the space of all

functions from Y to X with pointwise convergence topology. We will follow

the standard set theoretical notation, so an ordinal is equal to the set of its

predecessors. In particular, the set of natural numbers will be denoted by œ,

and if « e tw, then « = {0,... ,«-l}. The only topology on u> which will

be considered is the discrete one, so cow is the Baire space.

Among compact subspaces of Rw   particularly nice are Rosenthal compacta,

i.e., compact subspaces IcRffl such that every element of X is a pointwise

limit of continuous functions (see [R]). There are separable and not first count-

able Rosenthal compacta. Many examples of such compacta are constructed in

[Ma]. However in the beautiful paper [BFT] Bourgain, Fremlin, and Talagrand

proved that a Rosenthal compactum is a Frechet space.

The key to our paper is the notion of bisequentiality (see [PI, Definition

3.D.1]).

Definition 1. The space X is bisequential at a point x e X if every ultrafilter p

in X converging to x contains a sequence of sets converging to x.

Pol in [P1 ] improved the result of Bourgain, Fremlin, Talagrand and obtained

the following:
-
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Theorem 1 (Pol). A separable Rosenthal compactum is bisequential.

The main theorem we are going to prove is the following:

Theorem 2. Assume that X is a Rosenthal compactum, Y c X is countable

and dense, x e X . Then the following are equivalent :

(i)  Y has a countable base at x.

(xx)  {(yi)eYm:Hmi_<xyi'=x} isFaS.

(iii)   {(y,) € Y^linu^y, = x} is analytic.

In (ii) and (iii), Y is considered with the discrete topology.

It has to be pointed out that the set {(y() e Ym : lim^^ y, = x} is always

coanalytic. One can check it easily by direct computation, as in the proof of

the theorem in §3.

The paper is organized as follows: In §2 we will prove three technical lemmas,

which allow us derive in §3 the theorem and other corollaries.

2. Lemmas

In this section we will work with families of subsets of co or co<œ — Mc , (on .

We present notation and definitions for co, but all can be applied to co<w as

well.

In the theory of filters on co there is a strong trend to denote everything

by *. We will follow that nasty tendency: so Ac*B means A \ B is finite;

A —* B stands for Ac*B and Be* A; co* = ßco\co is the set of non-principal

ultrafilters on co; but if & c 3°(co) then F* = {co \ A : A e 9r}. Hence

if p e co* then p* is the maximal ideal on co dual to p, p** — p and

V«^" e 9°(co)3p e co*y*c*p* is the following (false) statement: For every fam-

ily 9~ of subsets of co there exists /—a maximal nonprincipal ideal on co

such that {B :co\B eSr}\I is finite.

Definition 2. Let ^ ,"§ c 9a(of) . Then

• ^ = {B c co :^A e ^ B D A =* (D} .
• £F is countably &-generated if there exists {An : « e co} c «f such

that B c A0 u • • • u Ak for all B e &, and some k e co.

• SF is bisequential if for every p e ßco with Fcp*, SF is countably
p*-generated.

Whenever &~ is an ideal then the definition of bisequentiality is closely con-

nected with that from the introduction. Details become transparent in the next

section.

The following lemma contains the key combinatorial part of the argument.

Lemma 1. Assume I c ¡3°(co) is bisequential and 9~ c / is not countably

I-generated. Then there exists a pairwise disjoint family sé = {An : « e co}

such that I is sé -generated and IF nâi>(An) is not countably I-generated for

every new.

Proof. Consider i' = {C c co : !F \~\3°(C) is countably /-generated}. By

definition Id', and by assumption that 9~ is not countably /-generated we

get co^lI' . It is easy to see that /' is an ideal. Let p e ßco be such that /' c p*.
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Then, by bisequentiality of / we can find a family {Dn : « e co} c p*, such

that / is {Dn : « e a>}-generated. Without loss of generality one can assume

that Dn's axe pairwise disjoint. Put N = {n e co : Dne i'} .

Claim I. (Jn€NDn el'.

Proof of the Claim. By definition of /' for every n e N there exists {Ek :

k e co} c /, such that & \~\3°(Dn) is {E"k : k e <y}-generated. But then

Fn9(\JneNDn) is (\JneN {Enk : k e 6o})-generated.

Indeed, let C e F n 9(\Jn&N Dn). Then there exists meco such that C c

Do u • • • u Dm-\ ■ since c Ç \Jn€NDn and Zys are disjoint, C C \Jn€Nnm Dn ■

Now, for every « e mdD, we can find kne co such that C n Dn c 7J U • • • U

7^ ; hence C c U„6Arnm ̂o u ' " u ^"   an<* we are done.   D

We will show now that co \ N is infinite. Assume for a contradiction that it

is not the case. Then \J„^N Dn e p*, {J„eN Dn e *  c P* an£*> by properties of

£>n's and definition of /', we get (co \ \J„ewDn) C (<u \ U^") e i' C p*. This

implies co e p*, a contradiction.

Now let {/c~n : « e a»} be a 1-1 enumeration of co\N. Put yl0 = U„eAfD„ u

Dk , An = Dk   for « > 0. Obviously {^n : « e w} satisfies the conclusion of

the lemma.   D

For 5 e co<w let s denote the set {/ 6 co<co : s c t}. Lemma 2 contains the

topological part of the argument.

Lemma 2. Assume I e £, is a bisequential and not countably I-generated ideal

on co. Then there exists 7 : co<w -^ co such that for J = T~ (I) the following

holds:

(i) V/e co{f\n : neco} e J.

(ii) Vß e J V« g co 3s0,... , sk e co" B c* s0 u • ■ • u sk.

Proof. Let cp : cow ttt» / be continuous. By induction on length of 5 (lhs) we

construct Fs and As such that when 7(i) = min As, the following conditions

will hold:

(a) sDt^AscAt\{T(t)}cco.

(b) s, t e co" , s ¿ t => As n At = 0.

(c) Fs is a closed subset of of .

(d) The diameter of Fs is less than 2
(e) n/^F,cF(.
(f) ç)(7i)c^,where 5g«^ if and only if {T(s\0), ... , T(s\(lhs - I))}

cBcAsU{T(s\0),... , T(s\(lhs - I))} .
(g) <p(Fs) is not countably /-generated .

(h)  ln&>(As \ {T(s)}) is {Ar<n> : « G w}-generated.

Let see first how such a construction implies the lemma. By definition of

7 and conditions (a) and (b), 7 is 1-1. By condition (g) Fs is not empty,

hence by (c) and (d) Ç\n€œ F,,   contains exactly one element for every f e co0).

But then by (f) this element is equal to <p~ ({T(f\n) : n e co}), and hence

{7(/|«) : « G co} e I, which proves (i).
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We prove (ii) by induction on « . Assume that B e J and B c s0 U • • • U sk

fox s0, ... , sk e co" . Then in particular {t e B : Iht < «} is finite. Let B' =

B \ {t e B : Ihr < «} . Then, by definition of 7, T(B' n s,) G &>(A, \ {7(5,.)}) n

/. Hence by (h) there is fc,. such that T(B' n lf) C ^~<0> U • • • U ¿L.~<A. > . It is

easy to see that i c T~x(At) for every t e co<w ,soB'c U,-</t{' ' ' = ST < m >

for m < k(}, and we are done.

The construction: Assume we already constructed Fs and As. Then by (g),

(¡>(FS) satisfies requirements of Lemma 1. Let {An : n e co} be as in Lemma

Land put As~<n> = (AsnAn)\{T(s)}, F^<n> = F, n <P~\^<n>). Then all

conditions are satisfied, except perhaps (d). To make (d) true, split F's<n> into

finitely many closed pieces of sufficiently small diameter. It is easy to see that

at least one piece must satisfy (g), and choose Fs~<n> to be such a piece,   o

We assume that the reader knows the concept of rank of well-founded subsets

of co<w . The key to the next lemma is the following classical characterization

of analytic families of well-founded sets given by Lusin (see [K, Mo]).

Theorem 3 (Lusin). If a family 33 of well-founded subsets of co<œ is L, , then

{rank(ß) : B e 33}  is bounded in co{.

Lemma 3. If I an ideal on co is lJ , bisequential and not countably I-generated

then I 0 L,.

Proof. Let J be as in Lemma 2. Then by Lemma 2(i) every element of J is well

founded. We prove that for every s g co<w the set {rank(ß) : B e J n 3°(s)}

is unbounded in col. Assume that for every 5 G co<w and every ß < a < col ,

we have Bs ß e Jn3s(s) with xank(Bs ß) > ß. Let {ßn : n e co} be an

enumeration of a. Then by Lemma 2(ii) B = \Jneo) Bs<n> „ U {s} e J and

rank (B) > a.   Hence, by the Lusin theorem 7 0S,, but J = T~ (I), so

3. Results

In this section we will derive Theorem 2 from the lemmas, and give some

remarks.

Proof of Theorem 2 . The implication from (i) to (ii) is easy. Indeed assume

that {Un : « G co} is a base of neighborhoods of x for Y . Then

{(yt) e Yw : Hm y¡ = x} = f| IJ C\W e ** : *< e UJ-
new keca i>k

Since {(y¡) e Yw : y, e Un} is closed and open in Yw, the set {(y;) G Yw :

lim^y,» x} is ¥aS.
The implication from (ii) to (iii) is trivial.

To prove the implication from (iii) to (i), assume that IcRB , x e X,

Y is a countable dense set in a neighborhood of x, and Y has no countable

base at x. Then {U n Y : U is an open neighborhood of x} generates a filter
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F on Y. Since Y is countable, we can assume that 7 is a filter on co. Let

/ = F* ; since Y has no countable base at x, / is not countably /-generated .

Moreover, by definition of the topology in R"  ,

A e F <¡=> 3/0, ... , fneco'°3a0, ... ,an,b0,... ,bne RVz < « ,

a, < x(f) < bi A Vy G Y(V/ < « a¡ < y(f) <b¡ W y € ¿).

Since X is Rosenthal, every element of X has a Borel definition. Because Y

is countable the above is a L, definition of 7 . It is easy to see that, since X is

bisequential, the ideal / is bisequential too. Hence / satisfies the assumptions

of Lemma 3.
Assume, for a contradiction that {(y() e Yw : lim^^y^ = x} G XJ . Then

{B c Y : VA G F B c* A} e E¡ , but this set is equal to 7 = {5 c Y : Wl G

IB DA -* <è} and by Lemma 3, / 0 E, , a contradiction.   D
In fact, in the above proof of Theorem 2 we make use of a condition weaker

then bisequentiality of X ; all that we needed was a similar condition for one

special ultrafilter in Lemma 2. On the other hand, to keep the last arguments

correct, every element of X has to be analytic. We do not know whether there

exists any compactum satisfying all that, but not a Rosenthal one.

Lemma 2 gives us more information. To make this precise consider two

ideals on co<co, J0 = {A : 3f0, ... , fn e co03 A c {f\k : i < «, k e co}} and

7, = {A : 3f e of A c(iE co<w : V« < lbs s(n) < /(«)}}. In fact Lemma 2

says that J0 c J c 7, . Both ideals are L, and not countably generated, but 70

is bisequential while 7, is not. Nevertheless all the above, can be applied to 7,

(and its subideals) as well. J{ is the maximal ideal satisfying the conclusion of

Lemma 2. The minimal cardinality of a base of the ideal 7, is usually denoted

by d. It is well known that both d — col<2° and col < 2N° = d are consistent

with usual axioms of set theory. Moreover cov(«^) = {min|«?"| : \\!F = R

and every element of & is meager} < d, and cov(«^) < d is consistent (see

[Mi]). It was known that a Rosenthal compactum has at a given point either

a countable base or no base of cardinality smaller than cov(«^) (see [P2]). By

Lemma 2 one can prove the following slightly stronger result.

to

Theorem 4. Let X c R be a Rosenthal compactum, x e X and Y c X

countable. Then either Y has a countable base at x, or Y has no base at x of

size less than d.   □

The interesting open question is whether in the above d can be replaced by

2N° (see[P2]).
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