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Abstract. Let (R, m) be a Noetherian local ring containing a field. The

syzygy theorem of Evans and Griffith (see The syzygy problem, Ann. of Math.

(2) 114 (1981), 323-353) says that a nonfree mth syzygy module M over R

which has finite projective dimension must have rank > m . This theorem is an

assertion about the ranks of the homomorphisms in certain acyclic complexes.

It is the aim of this paper to demonstrate that the condition of acyclicity can

be relaxed in a natural way. We shall use the generalization thus obtained to

show that the Bass numbers of a module satisfy restrictions analogous to those

which the syzygy theorem imposes on Betti numbers.

The acyclicity criterion of Buchsbaum and Eisenbud [3] is an essential tool

in what follows. Theorem 1 below is the general version given by Northcott

[ 14] which uses the polynomial or true grade of a module M with respect to

an ideal I (see [14]); it is denoted by Grade(7, M). It is unnecessary for

our considerations to know the exact definition of Grade(7, M). We will only

need the inequality Grade(7, M) > grade(7, M) where grade(7, M) denotes

the "classical" grade of an ideal 7 with respect to a module M; furthermore

one should note that Grade(7, M) — grade(7, M) if M is a finite (i.e., finitely

generated) module over a Noetherian ring 7? [14]. Other notation to be ex-

plained: if tp: F —> G is a homomorphism of finite free 7?-modules, then

Iu(ç>) denotes the ideal generated by the «-minors of (a matrix) of tp. Fur-

thermore, rank(tp, M) is the largest integer v for which Iv(tp)M / 0. Several

times we shall use that for a prime ideal p one has Iu(<p) <£ P if and only if

lm(tp ® Tvp) contains a free direct 7\p-summand of rank u of C7P ; this is an

easy consequence of Nakayama's lemma.

Theorem 1. Let R be an arbitrary commutative ring,

F.:0^Fsî+Fs_x^...^FxÎXFo

a complex of finite free R-modules, and M ^ 0 an R-module. For i = I, ... , s
we set a-, = Y,sJ=i(-l)J-i rankF,.

(a) If F. ® M is acyclic, then (i)   rank(ç>,, M) = r¡ for i = I, ... , s, and

(ii)  Grade(Iri(tpi), M) > i for i= I, ... ,s.
(b) Conversely, if condition (a)(ii) is satisfied, then F. ®Af is acyclic.
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Part (a) is [14, Theorem 14, p. 193] in a slightly different formulation. Part

(b) is [14, Theorem 2, p. 248], except that we have omitted condition (a)(i)

from its hypothesis; it is not difficult to derive from [14, Theorem 2, p. 101]

that (a)(ii) implies (a)(i).
Our rings R are always Noetherian and local, but the module M appear-

ing in the acyclicity criterion may be a balanced big Cohen-Macaulay mod-

ule, i.e., an Tv-module M such that every system of parameters of 7? is an

M-sequence. That such modules exist for local rings containing a field has

been shown by Höchster [10]; see also Griffith [8] or Bartijn and Strooker [1].

The name "balanced" has been introduced by Sharp [17]; Sharp proves that

the set of associated prime ideals of M/(ax, ... , ar) is finite if a{, ... , ar

is an Af-sequence. It is an easy exercise to verify that this property implies

grade(7, M) = Grade(7, M) for all ideals 7 of R.
Let (R, m, k) be a local ring. It is not a severe restriction to assume that a

complex

F. : 0 —► Fs —» Fs_ i —»...,—» JFj —> Fn

of finite free 7?-modules satisfies the conditions (i) Fs ^ 0 and (ii) <Pi(F¡) c
mF,_i for i = I, ... , s. This is obvious for (i), and for (ii) one observes that

fi can be decomposed as tp'^id: F/©C —► F/_, ©C with finite free F[ , F[_x,

and G / 0 if q>i(F¡) (£ mF,_i . Note that a minimal free resolution of a finite

module over a Noetherian local ring satisfies these conditions automatically.

Our first result is that the ranks r¡ in the acyclicity criterion must be positive

for the complexes just considered.

Proposition 1. Let (R,m, k) be a local ring, and

F:o^Fs^Fs_x^...^Fx^Fo

a complex of finite free R-modules with Fs ^ 0 and tp¡(F¡) c mF,_i for i —

I, ... , s. Suppose there exists an R-module M such that M ^ mM and

F. <g> M is acyclic. As before, set r¡ = X^=1(-l)-'~í rankFy. Then r, > 1 for

i = I , ... , s .

Proof. One has rs = rankF5 > 1 by hypothesis, and it follows from Theorem

1 that r, = rank(q>i, M) > 0 for all a. Arguing inductively, we have only to

show: rx = 0 implies r2 = 0.

If n = rank(ç>!, M) — 0, then obviously tpx <g> M = 0. Therefore we have

an exact sequence

F2®M92^M Fx®M^0.

Consequently F2®M®k^>F\®M®k—► 0 is also exact. By hypothesis

M t¿ mM, equivalently, M®k is a nonzero &-vector space. Thus the sequence

0

of finite-dimensional Ac-vector spaces must be exact. On the other hand, tp2 ®

Ac = 0 since (p2(F2) c mFi . Hence we get F2 = 0, and r2 = rank F2 -r\ - 0 .    D

All the proofs of the syzygy theorem of Evans and Griffith use the notion of

order ideal in an essential way. Let M be a module over a commutative ring

7?, and x £ M. Then

cf(x) = {a(x) : a £ HomR(M, 7?)}
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is called the order ideal of x.   Suppose that F is a free module with basis

ex, ... , en ■ For x £ F with representation x = axex -I-\-ane„ one obviously

has cf(x) = (ax, ... , an).

The following theorem and its proof are direct generalizations of Evans-

Griffith [6, Theorem 3.14 and its proof].

Theorem 2. Let (R, m) be a local ring containing a field. Let

F:0^Fs^Fs_x_...^Flï\Fo

be a complex of finite free R-modules such that

dimR/In(tpi) < dimR - t - i,        i = I, ... , s,

where r¡ = ¿~^j=j(-iy~j rank F, and t > 0. Then, for j = I, ... , s and every

e £ Fj with e $ mf, + Im tp¡+x one has dim R/rf(tpj(e)) < dim R- t - j.

Proof. Adjusting t and the indices, one may assume that j = I. Let / =
cf(tpx(e)). There is nothing to prove if J = R. So assume that J Cm.

We put 7? = R/J and F = F.<g>R. From the description of / above one gets

ç>, (e~) = 0. In order to derive a contradiction, we assume dimR/J> dimR-t.

Note that Ir0¡) = (In(<Pi) + J)/J ■ Hence

dimR/L^i) < dimR/In((Pi) < dim7? - i - t < dim~R - i.

Therefore In{c¡) contains a sequence Xx, ... , x¡ which is part of a system

of parameters for R . It follows that grade(7r, (fpt■), M) > i for a balanced big

Cohen-Macaulay module M of R. By the acyclicity criterion F.&M is acyclic.

Because of Çj(ë) = 0 we have (fpx ® M)(e~ ® M) = 0. Let C = Coker tp2, and

it: Fx -> C be the natural epimorphism. Since F'. ® M is acyclic, !p2® M

induces an isomorphism C ® M —> Im(ç?, ® M). So Jt(e~) <g> M = 0.

On the other hand, the hypothesis e £ mFx + Im tp2 implies that ñ(e) $

mC. Thus the image of 7i(ë) g> M under the natural epimorphism C ® M -*

(C/mC) <g> (M/vciM) is isomorphic with M/mM / 0, a contradiction.    D

In view of the methods of Bruns [2] it is only a technical exercise now to ob-

tain the following generalization of the syzygy theorem. For / = 0 the condition

on the complex F. is related to the notion of phantom acyclicity introduced by

Höchster and Huneke (see [11, Theorem 9.8]), and their methods easily yield

an analogous result.

Theorem 3. Let (R, m, k) be a Noetherian local ring containing a field. Con-

sider a complex

F.,Q-*Fs%Fs-l-+}..-+FíÜFo

of finite free R-modules with Fs ^ 0 and ça,(F,) c mF,_i for i = 1, ... , s.

Suppose that

dimR/In(tpi) < dimR - t - i,        i = I, ... , s,

where r¡ = £*=,(-l)'wrankF, and t>0. Then r) > t+i for i = I, ... , s-l.

Proof. In order to show that r¡ > t + i we can truncate the complex at F,_ i ,

adjust the indices, and replace t by t + i - I. Therefore it is enough to show

that a*i > í + 1 . Note that there is nothing to prove if s — 1 .
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Let M be a balanced big Cohen-Macaulay module for R . As in the proof

of the previous theorem it follows that F. ® M is acyclic. From Proposition 1

one gets that a*, > 1 for i = I, ... , s. This inequality covers the case t = 0.

Let / > 1. Since rank(ç?i, M) — r\ > 1, we have rankFi > ^ > 1 . As

<P2{F2) C mFi , there exists e £ Fx with e ^ mFi +Imtp2. Put F,' = Fx/Re,

and choose tp'2 as the induced map F2 -> F¡. Let p be a prime ideal with

dim7?/p > dimT? - t. Then 7r2(rj?2) çt p and In((px) <t P- Since r{ + r2 =

rank F2, one sees easily that the sequence

0 -> Im(çA2 ® Rp) -* F2 <S> Rp -» Im(ç?i ® Rp) -» 0

is split exact. By Theorem 2 we know that cf(tpx(e)) ÇL p; therefore tp\(e)

generates a free direct summand of Im(tp\ ® Rp). Hence Im(tp'2 ® Rv) is a

free direct summand of rank r2 of F[. This implies Iri(<p2) <£ P, whence

dim7?/7r.(^) < dim R - t - 1 .

Set C = Coker tp2 and choose an epimorphism n : G —► C* ; as usual C* =

HomR(C, 7?). Composing it* with the natural homomorphism C -» C** one

gets a map y/ : C —> G*, and it is easily seen that for every prime ideal p

and every free direct summand A^ of Cp one has that (ip ® RP)(N) is a free

direct Rp-summand of G* ® Rp. So we take F¿ — G* and choose tp\ as the

homomorphism F[ —> F0' induced by ^/. If, as above, dim 7?/p > dim R - t,
then Im ça, <g> Rp contains a free direct 7\p-summand of (F0')p of rankrj =

T\ - 1. So we get dimR/Ir>(tp'x) < dimR - t - 1, too. Furthermore, as s >

1, F s has not been touched. Finally, one obviously has tp'2(F2) c mF,'. If

tp\ (Fx ) <ft mF0', then one can decompose <p\ in the form q>" © id as discussed

above Proposition 1; replacing q>\ by q>" does not change the situation in an

essential way. Therefore an inductive argument applies to the complex

Ft: 0 - Fs - Fs_x -+ ■ ■ ■ -+ F2 ^ F[ 9-i F¿.   D

It seems that all the proofs of the syzygy theorem given by Evans and Griffith

[4-6] require a weak condition on the underlying ring. Theorem 3 contains the

syzygy theorem as stated at the beginning; in this generality it has also been

proved by Ogoma [15].

Corollary 1. Let R be a Noetherian local ring containing a field, and M an mth

syzygy module of finite projective dimension. If M is not free, then rank M > m .

Proof. There is an exact sequence F. : 0 —► Fs ^ Fs- x —►••■—> Fx ^ Fo such

that M — Imtpm , and furthermore Fs / 0 and tps(Fs) c mF^i : simply splice

an exact sequence in which M appears as an aaa th syzygy, with a minimal

free resolution of M. The acyclicity criterion yields that gradeIr¡(tp¡) > i. A

fortiori one has dimR/Iri(c>¡) < dim 7?- i. Since M is not free, it follows that

m < s . So rank M = rm > m results directly from the theorem.    D

In view of Proposition 1 one may ask whether the condition on dim R/Iri(tpi)

in Theorem 3, for the case in which t — 0, can be replaced by the requirement

that there exists an 7\-module M with M ^ mM for which F.®M is acyclic.

The following corollary shows that this is possible if M is finite. Another

suitable condition is that the homology of F. has codimension > 5 :

Corollary 2. Let R be a Noetherian local ring containing a field, and

F:0^Fs^Fs_x^...^Fx^Fo
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a complex of finite free R-modules with Fs ^ 0 and <Pi(F¡) c mF,_i for i =

I, ... , s. Suppose that one of the following conditions is satisfied:

(a) there exists a finite R-module M ^ 0 for which F. <g> M is acyclic;

(b) dim77,(F.) < dimR - s for i=l,...,s.

Then r, > i for i = I, ... , s - I.

Proof, (a) We may first replace R and F. by R/ Ann M and F. <g> R/ Ann M
respectively, and thus assume Supp M = Spec 7?. The acyclicity criterion yields

grade(7r,(0,-), M)
> a for all i. Since M is finite and Supp M = Spec R, it is easily seen

that dim7\/7r¡(9>,) < dim R - i. Therefore the hypotheses of the theorem are

satisfied with t = 0.
(b) Assume that dimR/Ir¡(c¡) > dim7? - i for some i, and let p be a

prime ideal containing In(<Pi) suchthat dimR/p = dimR/Ir¡(tpj). By hypoth-

esis the complex F. ® 7?p is acyclic. Therefore the acyclicity criterion implies

grade(Iri(g>i))p > i. A fortiori one has heightIn(<p¡) > i. This inequality con-

tradicts the assumption that dimR/Irj(tpj) > dimR - i.   D

We cannot present a counterexample to this corollary for nonfinite M. One

should note, however, that the inequality used in its proof, namely, grade(7, M)

< dimR - dimR/1 if Supp M = Spec 7?, does not hold in general, not even

for a balanced big Cohen-Macaulay module M. One of Nagata's famous coun-

terexamples is a three-dimensional noncatenary local domain R containing a

field,[13]. Thus R has a balanced big Cohen-Macaulay module M. Sharp
observed in [17] that SuppAf = Spec R and that the so-called little support

supp M of M (denoted supersuppM in [17]) is a proper subset of Spec 7?.

Then Theorem 3.6 of Zarzuela [18] implies that there exists a system of pa-

rameters Xx, x2, xt, for M which is not a system of parameters for 7?, hence

dim7v/(xi, x2 , Xi) > 0. On the other hand, Xx , x2 , Xj, is an M -sequence by

[18, Theorem 3.3].
Let R be a Noetherian ring and M a finite 7v-module. The Bass numbers

Pi(p, M) = dimfc(p)Ext^p(/c(p), Mp),        p£ Spec7?,

determine the minimal injective resolution

T : 0 -* E°(M) -> EX(M)^-> El(M) -> • • •

of M ; it is well known that E'{M) = ©p6Spec« E(R/p)Mp'M) for all i > 0.

Here E(R/p) denotes the injective hull of R/p and k(p) is the field Rp/pRp.
(Matsumura [12] contains all the results about injective modules needed be-

low.) In the following we want to derive inequalities satisfied by the numbers

Pi(m, M) when (R,m, k) is a local ring; since the Bass numbers are local

data by definition, such inequalities can be translated into assertions about the

Pi{p, M) in general. It is easily seen that the Bass numbers p¡(m, M) are in-

variant under completion. Therefore we may assume that R is complete; then

End(E(k)) = R, a crucial fact in what follows. For simplicity of notation we

set pi = Pi(m, M).
The best inequalities so far have been given by Foxby [7]. As Foxby did,

we use the idea of Peskine-Szpiro [16] which is to construct a complex of finite

free Tc-modules whose ranks are the Bass numbers p¡. Let rm(_) denote the

functor which assigns every module its submodule of elements annihilated by
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a power of m. Since every element in E{R/p) is annihilated by a power of p,

an application of rm(_) to T yields the subcomplex

J' : 0 - F(/cr * • • • "^ E{ky> 3. • • • .

The cohomology module H'(J') is the Ath local cohomology 7/m(Af) of M ;

see Grothendieck [9]. Since End(F(Ac)) = 7?, HomR{E{k), J') is a complex

G' = HomR{E{k), J') : 0 - R"° ̂  7?"' - • • • %- Ä* Ä • v

of finite free 7?-modules; furthermore the maps cr, can be considered matrices

over R, and tp, is given by the same matrix as ct, . Since T is a minimal

injective resolution, the entries of these matrices are in m.

Applying HomÄ(_ , E{k)) to J' one obtains another complex of finite free

7\-modules:

7. = Hom*(r , E(k)) : ■ ■ ■ h R*>^' ■ ■ ■ h 7?"' a^^O;

the matrix representing Xi is obviously the transpose of a,. Let * denote the

functor Homj¡(_ , 7?). As just seen,

{G')* = L.   and   (L.)* = G'.

The advantage of L. over G' is that we know its homology. By the exactness

of HomÄ(_ , E{k)) one has

Hi{L.) 3 HomÄ(77'(/-), E{k)) = Hom*(77m(M), E(k)).

Now it follows readily from a well-known vanishing theorem of local cohomol-

ogy that dim77,(L.) < i ; see [7, Remark (2.7)] for the details.
In order to adapt the present notation to those of Theorem 3 we set d -

dimTv, iv, = p¿_i, tpi = ipd-i, and define the complex F. by

F • o —► /?"<< % R^-' —>...—► R"< ̂ X 7?"o

We want to show that F. satisfies the condition dim R/Ir.(tpi) < d—i where r, =

¿Zj=i(—I)'~-'i'j: ■ Because of the duality between F. and L. one has In{tpi) =

Isd_,(Xd-i) with sv = )>2Vj=0{-l)JPj • Consider the truncation

(L.\d - a + 1): Rf"-'+' U-J Rß"-' ¿i-► Tv"1 -° R* -+ 0.

Since dim77„(L.) < v, the complex (L.\d - i + 1) ® 7?p is exact for prime

ideals p such that dim7\/p > d - i + 1. Then {L.\d - i + 1) ® Rp must
even be split exact. This property carries over to {L.\d - i + 1) ® Rp/pRp, and

elementary linear algebra shows that ISd_i(Xd-i) <£ P ■ Altogether one concludes

that dimR/Is^^Xd-i) <d - i as desired.

Let t = depth M. Since / = min{A : Ext'R{k, M) £ 0} = min{A : p¡ ^ 0},
one has R^-'+t = 0 for y > 1 and A"''-' ^ 0. Moreover, as noticed above,

(pi{RVi) C mT?"'-' . Omitting the zero terms at the left-hand side of F. yields

the complex

0 -* Rfä-, *+' R'ä-.-i _+-, R^ î\ Rvo >

which satisfies the hypotheses of Theorem 3. Thus

fl, i = d-t,
pd-i = v,: = ri+x + r, > I d-t,      i = d - t - 1 ,

I 2/ + 1,    i = 0, ... , d - t-2.
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We state this result formally as a part (a) of the following theorem; part (b) is

due to Foxby [7] and has been included for completeness.

Theorem 4. Let R be a Noetherian local ring containing a field, dim 7? = d,

and M a finite R-module of depth t.

(a) Then one has

( I, ' = t,

Pi{m,M)><  d-t, i = t+l,

( 2{d - i) + 1,    i = t + 2, ... ,d.

(b) If t < dim M = d, then p¿{m, M) > 2.

Remarks, (a) If 7? is a Cohen-Macaulay local ring (possibly of mixed character-

istic), then dimR/In(tpi) < dimR - i implies that gradeIn{<Pi) > i. Therefore

the complex F. defined above Theorem 4 is acyclic, and Proposition 1 already

yields

f 1,    i — depth M and i = dim 7?,

*<"•»>*{ 2,    depthM<i<dimR.

This inequality has been obtained by Foxby [7] for Cohen-Macaulay local rings

and local rings containing a field.
(b) Theorem 3 and its consequences admit conclusions for Noetherian local

rings (R, m) which do not contain a field. Let p = char7c/m and set 7? =

R/ip). If F. is a complex satisfying the hypotheses of Theorem 3, then F. <g>7?

again satisfies them after one has replaced t by t — 1. Since 7? contains a

field, one obtains the inequalities r¡ > t + i-l . Consequently these inequalities

with t = 0 hold in Corollary 2, too, and in Corollary 1 one must replace m by

m - 1 . The modification of Theorem 4(a) is left to the reader.
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