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Abstract. Let k be an algebraically closed field, K a function field in one

variable over k , and G a nontrivial finite group. It is proven that there exist

infinitely many Galois extensions L/K such that Gal(L/ÄT) is isomorphic to

G , and Gal(L/Ä^) = Autk(L). This extends to arbitrary characteristic, a result

first proven in the case k = C by Greenberg in 1974.

Introduction

In 1974, Greenberg published a result which showed that every finite group

occurs as the automorphism group of a compact Riemann surface [Gr]. In fact,

his result is more precise.

Theorem (L. Greenberg). Let K be a function field in one variable over C,

and G a nontrivial finite group. Then there exists a Galois extension L/K

such that Gal(L/K) is isomorphic to G, and Gal(L/K) = Autc(L), the full
automorphism group of L over C.

Greenberg uses analytic methods, but it makes sense to ask if the theorem

remains true when C is replaced by an arbitrary algebraically closed field k .

If G is assumed to be abelian, and K = k(T), this was shown by Valentini

and Madan [Va-Mad]. This was generalized by D'Mello and Madan to the case

of solvable groups [D'M-Mad]. Subsequently, Madden and Valentini showed

every finite group G occurs as the full automorphism group of a function field

L/k, but without controlling the genus of the fixed field of G [Madd-Va]. In
1984, Stichtenoth showed the full strength of Greenberg's theorem was valid

over any algebraically closed field if one makes the additional assumption that

the genus of K is at least two [St2]. It is the purpose of this paper to show that

this restriction is not necessary. Namely, we will prove

Theorem. Let K be a function field in one variable over an algebraically closed

constant field k, and let G be a nontrivial finite group. There exist infinitely

many Galois extensions L/K such that Gal(L/K)  is isomorphic to G, and

Gal(L/K) = Autk(L).
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In order to prove this completely general result, we will use tools developed

by these earlier authors, and, when the characteristic of k is positive, make

crucial use of some results of Harbater on mock covers of curves. Our proof

itself, however, is new and somewhat simpler than the proofs of these earlier

results, even in the case k = C.

1. Preparatory results

In this section we assemble some of the tools we will need for our proof.

Throughout the rest of the paper, k will denote an algebraically closed field,

and function field will ruean a function field in one variable over k. If K is

such a function field, gK will denote its genus. The following version of the

CastelnuTv  -Severi inequality, and its corollary, comes from [Stl, Madd-Va].

Proposition 1. Let L be a function field, and E and F be two subfields of finite

index. If L = EF, then

gL < [L: E]gE + [L: F]gF + ([L: E] - l)([L: F]-l).

Corollary. Let L/K be an extension of function fields. Suppose that for ev-

ery intermediate extension K c M c L, with M ^ K, gM > [M : K]2 +

2[M: K](gK - 1) + 1. Then, for every o £ Autk(L), we have o(K) = K.

Proof of Corollary. If o £ Aut^(L) is such that o(K) ^ K, let M be the
compositum of K and cr(7v). Applying the proposition to M and its two

subfields K and o(K) shows gM < [M: K]2 + 2[M: K](gK - 1) + 1 , which
contradicts the hypothesis.

We will later use the corollary in the following way. We will construct an

extension L/K such that every intermediate extension is ramified at many

primes. By the Riemann-Hurwitz genus formula, the genus of all intermediate

fields will be large. Using the corollary, this shows that every automorphism

of L induces an automorphism of K. We will then rigidify the situation

so that every such automorphism of K must be the identity. To achieve this

rigidification the following proposition will be of use. It is a small generalization

of a result in [Va-Mad].

Proposition 2. Let K be a function field of genus g, and T = {Px, P2, ... , Pt}

a set of primes of K with t > 2g + 3. Then, for all but finitely many primes

Q, the set V — T U {Q} has the property that the identity is the only element

of Autk(K) which maps V into itself.

Proof. According to Satz 9 of [Sch], a nontrivial automorphism of K has at

most 2g + 2 fixed points. It follows that an automorphism is determined by

its action on 2g + 3 primes.

Define Y = {o £ Autfc(7q| \oTn T\ > t - 1}. Since t - 1 > 2g + 3 it follows
easily that T is finite. For each y £ T, y not the identity, let Wy be the set

of primes Q, not in T, such that either yQ — Q, or yQ £ T. We claim

I Wy | < 2g + 3 . Suppose \Wy\ > 2g + 3. Since y is not the identity, it can fix
at most 2g + 2 primes. Thus there exist Q and Q' in Wy such that yQ and

yQ' are in T. Since \yTn T\ > t— 1, either yQ or yQ' is in ytf) T, and so

either Q or Q' is in T. This is a contradiction.



THE AUTOMORPHISM GROUP OF A FUNCTION FIELD 925

Let W be the union of all the W7 for y £F. We have shown that W is a

finite set. Let Q be a prime not in W U T, and set V — T U {Q} . Suppose

a £ A\xtk(K) maps V into itself. Then \oT n T\ > t - 1 , and either oQ = Q
or oQ £ T. If a were not the identity, the first condition would show o £ T

and the second condition would contradict the choice of Q. Thus o must be

the identity.

Proposition 3. Let p be the characteristic of k. Let G be a finite group with

more than two elements and otherwise arbitrary order if p = 0, and of order

prime to p if p / 0. Let H\, H2, ... , Ht be cyclic subgroups of G which
generate G. Let T = {Px, P2, ... , Pt} be a set of primes of K, and Q, not

in T, another prime of K. Then, after possibly replacing Ht with another

nontrivial cyclic group, there is a Galois extension L/K and an isomorphism

p: Gal(L/K) —► G such that for each i, I < i < t, we have p~x(H¡) is the
ramification group of some prime of L lying above P,■. Moreover, T' = Tö{Q}

is the full set of primes of K ramified in L.

Proof. If p — 0, let F be the Galois group of the maximal Galois extension

of K unramified outside of T'. If p ^ 0, let F be the Galois group of the
maximal prime-to- p Galois extension of K unramified outside of V (the tame

fundamental group). In both cases F is topologically generated by 2g + t + 1

elements ax, bx, ... , ag, bg, Cx, ... , ct, ct+x subject to the one relation

[ax, bx]--[ag, bg]cxc2-- -c,ct+x =e.

When p — 0, this is classical. When p / 0 this is a theorem of Grothendieck
(see Popp [P]). Define a homomorphism p from F to G by sending each a¡

and bi to e, each c, to a generator h¡ of 77, for i = 1, 2, ... , t, and c,+i

to (hxh2- ■ -ht)~x. Suppose aa, has order greater than two. By replacing ht by

an appropriate power of ht if necessary, we can assume hxh2 ■■ -ht / e. If

the order of ht is two, and hxh2 ■ ■ ■ ht = e, then {hx, h2, ■■ ■ , ht-x} already
generate G. Replace ht by any element gt £ G different from itself and e,

and 77, by (g,). This is possible because we are assuming G has more than

two elements. Thus, in all cases we can assume that hxh2 ■ ■ • ht / e . Let N c F

be the kernel of p, and L the fixed field of TV. Then, F/N s Gal(L/7q and
F/N = G. Let p : Gal(L/K) —> G be the isomorphism induced by p~. The
assertions about p~x(H¡) and V follow from the general theory.

Remark 1. Let G = (g) be a group with two elements, and T and V sets of

primes of K as in the statement of Proposition 3. Suppose t is odd. Then there

is a separable quadratic extension L of K such that Y is the full set of primes

of K ramified in L. To see this, using the notation of the proof, send each a¡

and bi to e, and each c, to g for i = 1, 2, ... , t, andc,+i to (g')~' = g.

Then, L is the fixed field of the kernel of this homomorphism. If t is even this

construction fails, as indeed it must, since a tamely ramified quadratic extension

must have an even number of ramified primes by the Riemann-Hurwitz genus

formula.

Remark 2. It is important to notice that it is not necessary to assume the groups

77, are distinct so long as, in their totality, they generate G. We will use this

remark later.
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Proposition 1,2, and 3 are all that will be needed to prove the theorem except

in the case where p / 0 and p divides \G\. To deal with this case some further

background will be called upon.

2. The main result

We now come to the proof of the theorem. We will prove a special case first.

The proof of the special case contains the main idea and is free from certain

technicalities.

Theorem'. Let K be a function field over k. Letp be the characteristic of k.

If p = 0, let G by any nontrivial finite group. If p ^ 0, let G be a nontrivial

group of order prime to p. Then, there exist infinitely many Galois extensions

L/K such that Gal(L/K) is isomorphic to G, and Gal(L/K) = Aut^(L).

Proof. Let g be the genus of K and aa the order of G. Let s - 2(n + g)2.

Let Hx, ■ ■ ■ , Hr be a set of nontrivial cyclic subgroups of G which generate

G. Set t = sr and let T = {Px, ... , Pt} be a set of t primes of K . Finally,
find a prime Q of K, Q not in T, such that any o £ Aut^(Tv) which maps

Y = T U {Q} into itself is the identity. This is possible by Proposition 2.
Assume G has more than two elements. By Proposition 3, we can find

a Galois extension L/7v and an isomorphism p: Gal(L/K) to G with the

following properties

(i) For each i with I < i < r, p~x(H¡) is the ramification group of some

prime above Pj for j = (i - 1 )s + 1, ... , is . (It is here that we use the

remark that the 77, in Proposition 3 need not be distinct.)

(ii)  Y is the full set of primes of K ramified in L.

We claim that Gal(L/7v) = A\xtk(K). Let M ^ K be an intermediate

extension. M cannot be fixed by all the groups p~x(H¡), since these generate

Gal(L/K). It follows that there are at least s primes in 7v which ramify in M.

A short computation, using the Riemann-Hurwitz genus formula, shows that

gM > n2 + 2n(gk - 1 ) + 1 , and so the hypotheses to the corollary of Proposition

1 are satisfied. It follows that every automorphism a £ Aut¿(L) induces an

automorphism of K. Such an automorphism must induce a permutation of

the ramification set Y = Tö {Q} . By Proposition 2, and the choice of Q, this

shows that a is the identity on K .

To deal with the remaining case where |C7| = 2, let / be an odd integer,

t > 4gK + 3, and T — {Px, P2, ... , P,} a set of distinct primes of K . By the
first remark following Proposition 3, for any prime Q of K not in T, we can

find a separable quadratic extension L/K ramified precisely above the set Y —

TU {Q}. Choose Q to satisfy the conclusion of Proposition 2. Since \Y\ =

t + 1 > 4gK + 4 , one finds that g¿ > 4 + 4(gK - I ) + I , and so by the corollary to

Proposition 1 every automorphism o £ Aut^(L) induces an automorphism of

K . This induced automorphism must permute the ramification set Y , and so,

using Proposition 2 once more, a must be the identity on K . This completes

the proof.

To prove our theorem in complete generality, we will use some results of

Harbater on mock covers of algebraic curves. These will enable us to imitate

the proof of Theorem'in the remaining case where p , the characteristic of k ,

is positive and p divides the order of G.
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Let G be a given finite group. One can find nontrivial cyclic subgroups

Hx, H2, ... , Hr, each of prime power order, which generate G. Let X be a

smooth projective curve, and K = k(X) the field of rational functions on X.

The main theorem will follow from the following two propositions.

Proposition 4. Let s be a positive integer. There is a Galois cover Y —> X with

group G and the property that for each i, 1 < i < r, there are at least s points

of X over which there is a point of Y having 77, as ramification group.

Proposition 5. Let s be a positive integer. Let a cover Y —> X be given which is

Galois with group G. Suppose that T = {Px, P2, ... , P,} is the branch locus,

and that for each i, 1 < a < r, there are at least s points in T above which

H¡ occurs as a ramification group. Let Q be a point of X not in T. Finally,

suppose p divides n . Then, there is a cover Z —> X such that

(a) Z —> X is Galois with group G, and with branch locus Y = {Px, P2, ...,
P,,Q}.

(b) For each i, 1 < i < r, there are at least s points of X over which there

is a point in Z having 77, as ramification group.

The proof of Proposition 4 is essentially contained in the first section of

[Ha2], Mock covers and Galois extensions, which builds on the earlier paper

[Hal], Deformation theory and the fundamental group. We sketch the idea.

Let t = sr, and find a covering of X by / affine open sets Uj which is not

redundant, i.e., for every j, Uj is not covered by {U¡\i ^ j} . For each j,

choose a point Pj £ U¡ which is not in IJ;^ [/, . For j = (i-l )s+1, ... , is find

a standard mock cover of Uj which is ramified only above Pj with ramification

group 77,. Let e¡ = |77,|. By taking n/e¡ disjoint copies of these standard mock

covers and labeling the sheets in the obvious way with the elements of the group

G we can find a (7-mock cover of each U¡ ramified only above 7*,. Now let j

vary from 1 to t and patch these covers over the intersections Uk n U\ . This is

easily done since all these mock covers are trivial over these intersections. We

have now described a G-mock cover over X with branch locus {P\, ... , Pt}

with the further property that each 77,, i — 1,2, ... , r, is the ramification

group above at least 5 points. Harbater shows how to deform this mock cover

into an actual Galois cover with Galois group G. The branch locus can move in

this deformation, and even increase in size, but the property that each 77, is the

ramification group above at least 5 primes is preserved. The details are given in

[Ha2, Proposition 1.2, and its corollaries]. The discussion there assumes X is

the affine line, but the methods work equally well with X a smooth, projective

curve.

To prove Proposition 5 one uses the same idea. Let 77 be a subgroup of G

of order p . Let Ax(k) be the affine line, and let k[x] be the ring of regular

functions on it. The Artin-Schreier equation, zp - xp~xz = t defines a family

of covers of A ' whose fiber at t — 0 is a mock cover ramified only at the origin

with ramification group cyclic of order p. Pulling this back one constructs a

(connected) mock cover of a neighborhood V of Q ramified only above Q with

ramification group 77 . By taking n/p disjoint copies of this, one constructs a

G-mock cover of V which is ramified only above Q. On U = X-{Q} consider
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the restriction of the given cover Y —> X. We have a family of deformations

over V which reduces to our (7-mock cover over V at t — 0, and we consider

the trivial family of deformations of our given cover over U. One special

feature of the Artin-schreier construction is that the point Q does not move in

the deformation. So if we can patch, deform, and specialize we can construct

the desired cover Z —> X. This can be done, but since we are working with

an actual cover over U at t = 0, instead of a mock cover, the details of the

patching are more delicate. This is carried out in [Ha3]. Proposition 6 of that

paper is virtually identical to our Proposition 5.

We are now in a position to prove our main theorem. If p does not divide

ai , then the result has already been proven (Theorem'). So assume p divides

n.

Let g be the genus of X, aa the order of the group G, and set s = (n + g)2 .

By Proposition 4, there is a field L = K(Y) which is a Galois extension of

K = k(X) with group G, and such that each subgroup 77, is the ramification

group of at least s = (n + g)2 primes of L. Let T be the branch locus of

Y —» X and choose a point Q £ X to satisfy the conclusion of Proposition
2. Now use Proposition 5, and replace L = k(Y) by L' = K(Z). As before,

L'/K is Galois with group G. Using (b) of Proposition 5, and the corollary

to Proposition 1 as in the proof of Theorem', we see that every a £ Aut^(L')

induces an automorphism of K. The branch locus of L'/K is the union of T

and {Q}. Since o restricted to K must permute the branch locus, the choice

of Q shows that o must be the identity on K. This completes the proof of

the theorem.
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