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DENSITY OF THE POLYNOMIALS
IN THE HARDY SPACE OF CERTAIN SLIT DOMAINS
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(Communicated by Paul S. Muhly)

Abstract. In this article we construct a Jordan arc T in the complex plane,

with endpoints 0 and 1, such that the polynomials are dense in the Hardy space

//2(D\r); D:= {z e C : \z\ < 1} .

It is well known that if G - {z e C : \z\ < 1}\[0, 1] (C denotes the complex

plane), then the polynomials are not dense in the Hardy space H2(G). One of

the assertions of this paper, however, is that there are regions D of the same

sort as G such that the polynomials are dense in H2(D). In fact, we construct

a homeomorphic image Y of the interval [0, 1 ], where Y has endpoints 0 and

1, and T\{1} ç D := {z e C : |z| < 1}, such that the polynomials are dense in

H2ÇD\Y).
Recall that if D is a bounded Dirichlet region, then the Hardy space H2(D)

is the collection of functions / that are analytic in D such that \f\2 has a har-

monic majorant on D. Furthermore, for any point zq in D (norming point),

the mapping || • ||Zo: H2(D) -> R defined by ||/||Zo = (u/(zq))x12 , where Uf is

the least harmonic majorant of |/|2 on D, is a norm on H2(D), and, under

this norm, H2(D) forms a Banach space (cf. [6]). By Harnack's inequality,

different norming points yield equivalent norms. We let co( ■ , D, zq) denote

harmonic measure on dD evaluated at zq . Notice that if / is analytic on D

and continuous on D, then / e H2(D) and

imu„ = {/i/(C)i2^(c,JD,^o)}   .

1. Definition. A function y : [0, 1 ] —> C is said to be a Jordan arc if and only

if it is both continuous and one-to-one. Throughout this paper we shall identify

a Jordan arc y with its trace Y := y([0, 1]).

In order to minimize technical details we do much of our work on a particular

"annular" region which has rectilinear boundary. For the rest of the paper let

E = {z = x+iy : 1 < max{|x|, \y\} < 2}, S = {z = x+iy : max{|jsc|, \y\} = 1},

and T — {z = x + iy : max{|x|, \y\} — 2}. Let us say that a Jordan arc Y :=
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y([0, 1]) connects S to T if y(0) eS, y(t) e E for 0 < t < 1 , and y (I) e T.
If z and C are complex numbers, then let [z, Ç] = {(1 - t)z + tÇ : 0 < / < 1}

(observe that [z, Ç] = [£, z]) be the segment that connects z to (.

2. Definition. Let G be a bounded, simply connected region in C. A Jor-

dan arc y is called a cross-cut of C7 if both y(0) and y(l) are in dG and

y((0,l))crj.

3. Lemma, (a) Let D and G be bounded, simply connected regions in C such

that zq e D ç G. If B is a Borel subset of (dD) Ci(dG), then oj(B , D, z0) <
co(B,G,zo).

(b) Let G be a bounded, simply connected region in C. If y is a cross-cut

of G (Y = y([0, I])), the components of G\Y are Gx and G2, z0 e Gx and

F = (dG2)\Y, then co(F, G, z0) < co(Y, C7, , z0).

Proo/(sketch). Part (a) follows from the maximum principle for harmonic func-

tions. Part (b) is a consequence of (a) and the fact that harmonic measure is a

probability measure.

4. Lemma. Suppose 0 < e < 1/4 and [£,, n] is a segment of length 2e in

{zeE:Re(z)>0}. Then tu(tf, »/], E\[i, n], -3/2) < -l/log(e).

Proofs Let D = {z g C : |z| < 4} and A = {z g C : |z-((C+f/)/2)| < e} ; notice

that A ç {z g C : |z| < 3} . Since E\[Ç, ?/] ç D\[Ç,n],it follows from Lemma
3(a) that_co([Ç, n], E\[Ç, n], -3/2) < co([Ç, r,],D\[C, n], -3/2). Likewise,

since D\A ç D\[Ç, n] we have co(dD, D\A, -3/2) < co(dD, D\[Ç, r¡], -3/2),

and therefore co([Ç, n],D\[Ç, n], -3/2) < w(dA, D\A, -3/2). Conse-

quently, œ([Ç, n],E\[C, n], -3/2) < œ(dA, D\A, -3/2).
Next we let tp be a Möbius transformation that maps D onto the unit disk

D and A onto a disk A,, with center z = 0. Elementary calculations give us

that |ç>(-3/2)| > 3/8 and that the radius of A^ is at most e. So

log(3/8) < log \<p(-3/2)\ = J log \z\ dco(z, D\A^ , <p(-3/2))

= [log(radius (A,))] • w(öA,,, B\Ä, , <p(-3/2))

< [log(e)] • w(dAy, B\K9 , <p(-3/2)).

Therefore,

œ([Ç, n],E\[Ç, n], -3/2) < œ(dA, D\Ä, -3/2)

= ^\^\Äf,<p(-3/2))<m<^.    □

5. Lemma. // Y is a Jordan arc that connects S to T, co := co(-, is\r, zq) ,

and l/z can be approximated by polynomials in the L2(co) norm, then the

polynomials are dense in the Hardy space H2(E\Y).

Proof. Let <p be a conformai map from D := {z G C : \z\ < 1} one-to-one and

onto £\r such that <p(0) = z0 , and define || • ||: H2(E\Y) -> R by

IL/ll2 = l/(zo)l2+ /   |/'|2(i-|^-'|2)^.
JE\r
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By Green's Theorem and a change of variables, || • || defines a norm on H2(E\Y)

that is equivalent to the Hardy space H2(E\Y) norm.

Now from our hypothesis it follows that no point in d(E\Y) can be an an-

alytic bounded point evaluation for the polynomials with respect to the L2(a>)

norm. Since the L2(oS) and H2(E\Y) norms are equivalent for the polynomi-

als, we can conclude that no point in d (E\Y) is an analytic bounded point eval-

uation for the polynomials with respect to the L2((l-\q>~x\2)dA) norm. There-

fore, by [5, Theorem 4], the polynomials are dense in L2(E\Y, (l-\tp~x\2)dA),

and thus are dense in H2(E\Y) by [4, Corollary 3.4].    D

Let T be a Jordan arc that connects S to T. How pathological must Y

be so that the polynomials have a chance of being dense in H2(E\Y)1 If

(p is a conformai map from the unit disk D one-to-one and onto E\Y and

the polynomials are dense in H2(E\Y), then by [4, Corollary 3.5] <p must

be univalent almost everywhere on <9D. This can be rephrased in terms of

œ(-, E\Y, zq) to give us that the set of tangent points of Y (see [3]) has one-

dimensional Hausdorff measure equal to zero; but much more can be said.

Indeed, if there exists one point z in Y and a crescent Q in £'\r, with

multiple boundary point z , such that the bounded component of C\Q contains

{z = x + iy: min{|.x|, \y\} < 1} and the polynomials are not dense ir H2(Ci),

then the polynomials are not dense in H2(E\Y). A consequence of this (cf.

[1]) is that if there exists one point z in Y such that from each side of Y we

can approach z through a cone in E\Y, then the polynomials are not dense in

H2(E\Y).

6. Theorem. There exists a Jordan arc Y that connects S to T such that the

polynomials are dense in H2(E\Y).

Proof. By Lemma 5, it is sufficient to produce a Jordan arc Y that connects S

to T such that -3/2 ^ Y and 1/z can be approximated by polynomials in

the L2(oj) norm; o) := u>(-, E\Y, -3/2). A reasonable strategy for producing

this T is to find a sequence of polynomials {pn} and a sequence of polygonal

Jordan arcs {r„} such that

(a) for all n, Y„ connects S to T, Re(z) > 0 for all z in Y„, and {r„}

converges uniformly to a Jordan arc Y that connects S to T;

(b) / \l/z - pk\2 da>„ < l/k whenever I <k <n, where

a>„ :=&>„(• , E\Y„, -3/2).

In fact, for convenience of proof, we shall choose Yn so that its angle of inci-

dence with both S and T is n/2 and that the angle formed by Yn at any of

its vertices is at least 7i/3. The limiting arc Y is the one we are after.

Let Wx = {z G E : dist(z, [1, 2]) < 1/8}. By Runge's Theorem, there is a

polynomial px such that

\\(l/z-px)2\\E\Wl:=sup{\l/z-px(z)\2:zeE\Wx}<l/2.

Now we construct Yx . Let Qi = {1 - i/4, 5/4 + i/4, 3/2 - i/4, 7/4 + i/4, 2 -
i/4} ; obviously 5 = cardinality of Qi := |f¿i|. Choose 0 < ex < 1/16 small
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Figure 1

enough so that

(6-2) 5(ioî(b)<1/(2|l(1/z"/'i)2|ki)-

Let Ki = ([l + i/4,2 + i/4]U[l-i/4,2-i/4])\UzeQlB(z;ex), where B(z;ex)
:= {C G C : \z - C\ < £1} • Now Kx is a closed set with five components:

7i(l), /i(3), 7i(5), Ix(T), and 7i(9), each of which is a segment. The num-

bering scheme is as follows: Ix(j) ç [I + i/4, 2 + i/4] for j = 1,5,9;
I\U) Ç [1 - i/4, 2 - i/4] for ; = 3, 7; Re(z) < Re(C) < Re(?7) whenever
z G /i(l), C G /i(5), and n e 7,(9), and Re(z) < Re(C) whenever z e /,(3)
and C e 7[(7). Connect the right endpoint of /i(l) to the left endpoint of

7i(3), the right endpoint of 7j(3) to the left endpoint of 7i(5), the right end-
point of 7i(5) to the left endpoint of 7i(7), and the right endpoint of I\ (1)
to the left endpoint or 7i(9), with segments 7^2), 7^4), 7i(6), and 7i(8), re-

spectively. Let Yx = {fj=\ I\(j) (see Figure 1). Notice that Yx is a polygonal

Jordan arc that connects S to T, the angle of incidence of Yx with both S

and T is n/2, and the angle formed by Yx at any of its vertices is at least

n/3.
Now W\ is only accessible in 7s\ri from z —-3/2 through five "gaps" in

Yx, each of size at most 2ex ■ Consequently, by (6.2), Lemma 4, and Lemma

3(b), cox(Wx)< l/(2||(l/z-p1)2||H,|); œx := cox(-, E\YX , -3/2). Therefore,

since \\(l/z -px)2\\e\iv, < 1/2, we have that

/ |l/z -px\2dcox < 1.

For n > 2, Y„ is constructed inductively so that "over" each segment of

r„_! , T„ looks like Yx . In order to construct Y„ , certain other items need to

be defined inductively. For n > 2, let

W„ = {zG£:dist(z, r„_0 <e„_,/16}

and let

W'n = {z G E : dist(z, r„_,) < e„_,/8}.
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By Runge's Theorem there is a polynomial pn such that ||(l/z - pn)2\\E\w„ <

1/(2«). The substance of the inductive step is found in the construction of r2

and so, for the most part, we focus our attention there.

Recall that Y{ = \JjmlIi(J)- For 1 < 7 < 9, let I*(j) be the straight
line that contains h(j), and let D2(j) = {z e C : dist(z, 7*(7)) < e./8}.
For j = 2, 4, 6, 8 , let V2(j, j + I) = D2(J) n D2(j + 1) and V2(j, j - 1) =
D2(j)nD2(j-l). Let

W2" = W¡üÍ \J(V2(2j,2j+l)U V2(2j, 2j - 1)) 1 .

Notice that, unlike dW2, dW2" is a polygon. Moreover, since the angle formed

by Yx at any of its vertices is at least n/3, it follows that dist(z, Yx) < sx/4

whenever z G W2 . We shall construct Y2 using cl{7s n (dW2")} .

Now dV2(j, j+l) [resp., d V2(j, j -1 )] is a parallelogram (7 = 2,4,6,8).
Let a2(j, j+l) [resp., a2(j, j - 1)] be the unique vertex of dV2(j, j+l)

[resp., d V2(j, j - 1 )] which is in co(Ix (j) U 7i (j + 1 )) := closed convex hull of

(/,(7)117,(7-1-1)) [resp., co(7,(7)U7i(7-l))]. Let hU J+l) [resp., b2(j,j-l)}
be the unique point in dD2(j + 1) [resp., ¿302(7 - 1)] such that the segment

[a2(j, j+l), b2(j, j+l)] [resp., [a2(j ,j-l), b2(j, j - 1)]] is perpendicular

to I*(j + 1) [resp., 7,(7 - 1)], and let c2(j, j + 1) [resp., c2(j, j - 1)] be
the unique point in dD2(j) such that the segment [a2(j, j + 1), c2(j ,7+1)]

[resp., [a2(j, j - 1), c2(j, j - 1)]] is perpendicular to I*(j). Let a2(0, 1)

[resp., 02(10, 9)] be the intersection of the component of cl{7? n (d W2")} that

contains a2(2, 1) with S [resp., T], and let 62(0, 1) [resp., ¿2(10, 9)] be the
intersection of the component of cl{7i n (dW2)} that contains ¿>2(2, 1) with

S [resp., T]. For 1 < j < 9, if j is odd, then let R2(j) be the rectangle
with vertices a2(j + I. j), a2(j -I, j), b2(j + I, j), and b2(j - 1, 7) ; and if ;

is even, then let 7?2(7) be the rectangle with vertices a2(j, j + 1), a2(j, j - 1),

^2(7 > j + l), and C2O » 7~ 1) • Call a rectangle R2(j) even if its ^-vertices are

diagonal, and odd otherwise. Notice that 7?2(7) is even if j is odd, and odd if

7 is even.
With straight lines that are perpendicular to I2(j), partition 7?2(7) into

congruent subrectangles so that the number of subrectangles is even [resp., odd]

if 7?2(7) is even [resp., odd], the greatest dimension of any subrectangle is ex/4

(the width of R2(j)) and the least dimension is no less than ej/8 ; it is possible

to partition in this way because the length of any 7?2(7) is at least twice its

width—see Figure 2 on next page (labeled in part). Let Q2 be the collection of

points defined by:

(i)  fl2(0, l)Gf22

(ii) z G Q2 if and only if z is a vertex of some subrectangle of some 7?2(7)

and the vertex diagonal to z in this subrectangle is in Q2.

Now choose 0 < s2 < ej/16 (for n > 2, 0 < e„ < e„_i/16) small enough so

that

(6.3) |í22|(-l/lQg(fi2))< l/(4||(l/z-lP2)2|k2),

and let K2 = cl{E n (dW2n)}\\JzeÜ2B(z; e2). Notice that K2 is made up of

finitely many components, each of which is either a segment or a polygonal Jor-

dan arc that is the union of two segments. In the same way that Yx was pieced
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«S
b„(10,   9)

a2(10,   9)

Figure 2

E\r

Figure 3

together, construct Y2 by connecting, with segments, the right endpoint of the

component of K2 which contains 62(0, 1) to the left endpoint of the compo-

nent which contains the vertex that is diagonal to b2(0, 1) in the subrectangle

of 7?2(1) which has ¿>2(0, 1) as a vertex, etc. (see Figure 3). The resulting arc

r2 is a polygonal Jordan arc whose angle of incidence with both 5" and T is
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n/2 and whose angle at any vertex is at least n/3. Moreover, any maximal

segment of T2 (i.e., a segment of T2 that is properly contained in no other

segment of T2) has length at least 2e2. Now since ||(l/z - p2)2\\e\ív2 < 1/4

and W2 is only accessible in 7?\r2 from z = -3/2 through |Q2| "gaps" in
T2 each of size at most 2e2 , it follows from (6.3), Lemma 4, and Lemma 3(b)

that

J\l/z-p2\2dœ2< 1/2,

where a>2 := co2(-, E\Y2, -3/2). Also notice that by our choice of Y2, in

order to access Wx in7s\r2 from z = -3/2, one must pass through one of

five gaps in T2, each of which represents a narrowing of one of the gaps in Yx .

Consequently,

/ \l/z -px\2dco2 < 1.

For n > 3, p„ is chosen and Yn is constructed in basically the same way

we chose p2 and constructed r2 .

Let us parametrize Yn. Define yx'. [0, 1] -+ Yx by yx(x) is the point on

Yx whose distance along Yx from S is x- [length (r,)]. Now we turn to

T2. For 7 = 2,4,6,8 let a'2(j, 7+1) [resp., a'2(j, j - 1)] be the ver-
tex of dV(j, 7+1) [resp., dV(j, j - I)] that is diagonal to a2(j, 7+1)
[resp., a2(j, j - I)]. Notice that a'2(j, 7+1) and a'2(j, 7 — 1) are in Y2.

Now T2\{\J*=l{a'2(2i, 2i + 1), a'2(2i, 2/ - 1)}} has nine components; number

them as to the order in which each is encountered when traversing T2 from

S to T. Define a continuous one-to-one function ß2:Yx —> r2 by mapping

7i(7) (recall that Ti = [fj=l Ix(j)) onto the closure of the 7th component of

Y2\{\J\=x{a'2(2i,2i+l), a'2(2i,2i-l)}} in the same way that y\ maps [0, 1]
onto Yx . Let y2 = ß2 o y, . Similarly, for any n , define a continuous one-to-

one function ß„: T„_i —> Y„ by mapping any maximal segment of r„_! (i.e.,

a segment of r„_] that is properly contained in no other segment of T„_i) to

the part of Y„ that "covers" the segment. Then let y„ = ß„ o yn_x .

Choose S > 0. Now there exists A > 3 such that e„_2 < 5. No maximal

segment of T„_ i has length greater than (3/4) • eAr_2. So, by the construction of

Yk and the definition of yk , if m, n > N and t e [0, 1], then \ym(f)-7n(t)\ <
S . Therefore, {yn} is uniformly Cauchy and hence converges uniformly to a

continuous function y: [0, I] —► T:= y([0, 1]).

To show that y is one-to-one, choose s and t in [0,1] such that 5 /
/. By the definition of y„ there exists A such that ?#(•?) and 7^(0 are in

nonadjacent maximal segments of Y^ . Reviewing the construction of Yn , we

find that |7jv(s) - 7v(i)l > 2e^ . In fact, if n > N + 1 , then

n

\7n(s)-yn(t)\>2eN-2-   Y,   4¡%Ñ>^-
k=N+\

Hence, \yn(s) - yn(f)\ -^ 0 as n —> oo, and so y(s) 4 y(0 • Therefore y is

one-to-one, and T is a Jordan arc.

We now have a sequence of polynomials {p„} and a sequence of polygonal

Jordan arcs {Yn} which satisfy (6.1)(a) and (b). Let œ := œ(-, E\Y, -3/2).
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Since r„ converges uniformly to T, it follows that, for fixed k ,

j \l/z-pk\2dojn -* I \l/z-pk\2dw,

as n —» oo ; o)n :— œ„( •, E\Yn , -3/2). Therefore, because / \l/z-pk\2 dco„ <

l/k whenever 1 < k < n , we have that

[\l/z-pk\2dco< l/k^0,

as k —> oo . by Lemma 5, the proof is now complete.   D

7. Theorem. There exists a Jordan Y := y([0, I]), where y(0) = 0, y(t) e D :=

{z G C: \z\ < 1} for 0 < r < 1, and y (I) - 1, such that the polynomials are

dense in 772(D\r).

Proof (sketch). In a way similar to the proof of Theorem 4, we produce a se-

quence of Jordan arcs {r„ := y„([0, 1])} (r„ having the same geometry as
in the proof of Theorem 4), where yn([0, 1]) ç {z G D; Re(z) > 0} and

|y„(l)| = 1 for all n, a sequence of points {tn}, where 0 < tn < 1 and

\Yn(tn) - y«(0)| —» 0 as n —► oo , and a sequence of polynomials {p„} such that:

(a) r„ converges uniformly to a Jordan arc Y :- y([0, 1]), where y(0) =

0, y(t) g D for 0 < t < 1, and y(\) = 1 ;

(b) \Pn(yn(tn))\ > 1 for all n , and / \pk\2 dojn < l/k whenever 1 < k < n ,

where o)n:=con(-, B\Yn , -1 /2).

The limiting arc Y := y([0, 1]) will then have the property that, for all n,

¡\p„\2dœ < l/n (a := w(-,D\r, -1/2)) and yet |p„(y„(i„))| > 1, where
Yn(tn) —> 7(0) as « —> cxD. So, y(0) is not an analytic bounded point evaluation

for the polynomials with respect to the 772(D\r) norm, and hence nor is any

point in 9(D\r). Following an argument similar to the proof of Lemma 3, we

get that the polynomials are dense in 772(D\r).   D

8. Remark. Theorems 4 and 5 provide us with new examples of analytic

Toeplitz operators T9 , where <p is a Riemann map from the unit disk D onto

7i\r (of Theorem 4) or onto D\r (of Theorem 5), such that T9 is cyclic (with
cyclic vector 1) and yet cp is not a weak-star generator of 77°° (cf. [8]).

There is unfinished business here, and yet very little of it is easily approach-

able.

9. Problem. Find a condition on Y which is both necessary and sufficient for

density of the polynomials in H2(U\Y), where Y := y([0, 1]) is a Jordan arc

such that y([0, 1)) C D and y(l) = 1 .

10. Question. Does there exist a Jordan arc Y, with endpoints 0 and 1 , such

that the polynomials are dense in L2(D\r, dA) ?
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