DENSITY OF THE POLYNOMIALS IN THE HARDY SPACE OF CERTAIN SLIT DOMAINS

JOHN AKEROYD

(Communicated by Paul S. Muhly)

ABSTRACT. In this article we construct a Jordan arc Γ in the complex plane, with endpoints 0 and 1, such that the polynomials are dense in the Hardy space $H^2(\mathbb{D}\backslash\Gamma)$; $\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}$.

It is well known that if $G=\{z\in\mathbb{C}:|z|<1\}\setminus[0\,,\,1]$ (\mathbb{C} denotes the complex plane), then the polynomials are not dense in the Hardy space $H^2(G)$. One of the assertions of this paper, however, is that there are regions D of the same sort as G such that the polynomials are dense in $H^2(D)$. In fact, we construct a homeomorphic image Γ of the interval $[0\,,\,1]$, where Γ has endpoints 0 and 1, and $\Gamma\setminus\{1\}\subseteq\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}$, such that the polynomials are dense in $H^2(\mathbb{D}\setminus\Gamma)$.

Recall that if D is a bounded Dirichlet region, then the Hardy space $H^2(D)$ is the collection of functions f that are analytic in D such that $|f|^2$ has a harmonic majorant on D. Furthermore, for any point z_0 in D (norming point), the mapping $\|\cdot\|_{z_0} : H^2(D) \to \mathbb{R}$ defined by $\|f\|_{z_0} = (u_f(z_0))^{1/2}$, where u_f is the least harmonic majorant of $|f|^2$ on D, is a norm on $H^2(D)$, and, under this norm, $H^2(D)$ forms a Banach space (cf. [6]). By Harnack's inequality, different norming points yield equivalent norms. We let $\omega(\cdot, D, z_0)$ denote harmonic measure on ∂D evaluated at z_0 . Notice that if f is analytic on D and continuous on \overline{D} , then $f \in H^2(D)$ and

$$||f||_{z_0} = \left\{ \int |f(\zeta)|^2 d\omega(\zeta, D, z_0) \right\}^{1/2}.$$

1. **Definition.** A function $\gamma: [0, 1] \to \mathbb{C}$ is said to be a *Jordan arc* if and only if it is both continuous and one-to-one. Throughout this paper we shall identify a Jordan arc γ with its *trace* $\Gamma := \gamma([0, 1])$.

In order to minimize technical details we do much of our work on a particular "annular" region which has rectilinear boundary. For the rest of the paper let $E = \{z = x + iy : 1 < \max\{|x|, |y|\} < 2\}$, $S = \{z = x + iy : \max\{|x|, |y|\} = 1\}$, and $T = \{z = x + iy : \max\{|x|, |y|\} = 2\}$. Let us say that a Jordan arc $\Gamma := \{x = x + iy : \max\{|x|, |y|\} = 2\}$.

Received by the editors August 14, 1989 and, in revised form, January 15, 1991.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 30E10, 30D55; Secondary 30C85, 47B20.

- $\gamma([0, 1])$ connects S to T if $\gamma(0) \in S$, $\gamma(t) \in E$ for 0 < t < 1, and $\gamma(1) \in T$. If z and ζ are complex numbers, then let $[z, \zeta] = \{(1 t)z + t\zeta : 0 \le t \le 1\}$ (observe that $[z, \zeta] = [\zeta, z]$) be the segment that connects z to ζ .
- 2. **Definition.** Let G be a bounded, simply connected region in \mathbb{C} . A Jordan arc γ is called a *cross-cut* of G if both $\gamma(0)$ and $\gamma(1)$ are in ∂G and $\gamma((0, 1)) \subseteq G$.
- 3. **Lemma.** (a) Let D and G be bounded, simply connected regions in \mathbb{C} such that $z_0 \in D \subseteq G$. If B is a Borel subset of $(\partial D) \cap (\partial G)$, then $\omega(B, D, z_0) \leq \omega(B, G, z_0)$.
- (b) Let G be a bounded, simply connected region in \mathbb{C} . If γ is a cross-cut of G ($\Gamma = \gamma([0, 1])$), the components of $G \setminus \Gamma$ are G_1 and G_2 , $z_0 \in G_1$ and $F = (\partial G_2) \setminus \Gamma$, then $\omega(F, G, z_0) \leq \omega(\Gamma, G_1, z_0)$.

Proof (sketch). Part (a) follows from the maximum principle for harmonic functions. Part (b) is a consequence of (a) and the fact that harmonic measure is a probability measure.

4. **Lemma.** Suppose $0 < \varepsilon < 1/4$ and $[\xi, \eta]$ is a segment of length 2ε in $\{z \in E : \text{Re}(z) > 0\}$. Then $\omega([\xi, \eta], E \setminus [\xi, \eta], -3/2) \le -1/\log(\varepsilon)$.

Proof. Let $D = \{z \in \mathbb{C} : |z| < 4\}$ and $\Delta = \{z \in \mathbb{C} : |z - ((\zeta + \eta)/2)| < \varepsilon\}$; notice that $\overline{\Delta} \subseteq \{z \in \mathbb{C} : |z| < 3\}$. Since $E \setminus [\zeta, \eta] \subseteq D \setminus [\zeta, \eta]$, it follows from Lemma 3(a) that $\omega([\zeta, \eta], E \setminus [\zeta, \eta], -3/2) \le \omega([\zeta, \eta], D \setminus [\zeta, \eta], -3/2)$. Likewise, since $D \setminus \overline{\Delta} \subseteq D \setminus [\zeta, \eta]$ we have $\omega(\partial D, D \setminus \overline{\Delta}, -3/2) \le \omega(\partial D, D \setminus [\zeta, \eta], -3/2)$, and therefore $\omega([\zeta, \eta], D \setminus [\zeta, \eta], -3/2) \le \omega(\partial \Delta, D \setminus \overline{\Delta}, -3/2)$. Consequently, $\omega([\zeta, \eta], E \setminus [\zeta, \eta], -3/2) \le \omega(\partial \Delta, D \setminus \overline{\Delta}, -3/2)$.

Next we let φ be a Möbius transformation that maps D onto the unit disk \mathbb{D} and Δ onto a disk Δ_{φ} with center z=0. Elementary calculations give us that $|\varphi(-3/2)| \geq 3/8$ and that the radius of Δ_{φ} is at most ε . So

$$\begin{aligned} \log(3/8) &\leq \log |\varphi(-3/2)| = \int \log |z| \, d\omega(z \,,\, \mathbb{D} \backslash \overline{\Delta}_{\varphi} \,,\, \varphi(-3/2)) \\ &= [\log(\mathrm{radius} \,\, (\Delta_{\varphi}))] \cdot \omega(\partial \Delta_{\varphi} \,,\, \mathbb{D} \backslash \overline{\Delta}_{\varphi} \,,\, \varphi(-3/2)) \\ &\leq [\log(\varepsilon)] \cdot \omega(\partial \Delta_{\varphi} \,,\, \mathbb{D} \backslash \overline{\Delta}_{\varphi} \,,\, \varphi(-3/2)) \,. \end{aligned}$$

Therefore,

$$\begin{split} \omega([\zeta\,,\,\eta]\,,\,E\backslash[\zeta\,,\,\eta]\,,\,-3/2) &\leq \omega(\partial\Delta\,,\,D\backslash\overline{\Delta}\,,\,-3/2) \\ &= \omega(\partial\Delta_\varphi\,,\,\mathbb{D}\backslash\overline{\Delta}_\varphi\,,\,\varphi(-3/2)) \leq \frac{\log(3/8)}{\log(\varepsilon)} < \frac{-1}{\log(\varepsilon)}\,.\quad\Box \end{split}$$

5. **Lemma.** If Γ is a Jordan arc that connects S to T, $\omega := \omega(\cdot, E \setminus \Gamma, z_0)$, and 1/z can be approximated by polynomials in the $L^2(\omega)$ norm, then the polynomials are dense in the Hardy space $H^2(E \setminus \Gamma)$.

Proof. Let φ be a conformal map from $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ one-to-one and onto $E \setminus \Gamma$ such that $\varphi(0) = z_0$, and define $\|\cdot\|: H^2(E \setminus \Gamma) \to \mathbb{R}$ by

$$||f||^2 = |f(z_0)|^2 + \int_{E \setminus \Gamma} |f'|^2 (1 - |\varphi^{-1}|^2) dA.$$

By Green's Theorem and a change of variables, $\|\cdot\|$ defines a norm on $H^2(E\backslash\Gamma)$ that is equivalent to the Hardy space $H^2(E\backslash\Gamma)$ norm.

Now from our hypothesis it follows that no point in $\partial(E\backslash\Gamma)$ can be an analytic bounded point evaluation for the polynomials with respect to the $L^2(\omega)$ norm. Since the $L^2(\omega)$ and $H^2(E\backslash\Gamma)$ norms are equivalent for the polynomials, we can conclude that no point in $\partial(E\backslash\Gamma)$ is an analytic bounded point evaluation for the polynomials with respect to the $L^2((1-|\varphi^{-1}|^2)dA)$ norm. Therefore, by [5, Theorem 4], the polynomials are dense in $L^2_a(E\backslash\Gamma, (1-|\varphi^{-1}|^2)dA)$, and thus are dense in $H^2(E\backslash\Gamma)$ by [4, Corollary 3.4]. \square

Let Γ be a Jordan arc that connects S to T. How pathological must Γ be so that the polynomials have a chance of being dense in $H^2(E \setminus \Gamma)$? If φ is a conformal map from the unit disk $\mathbb D$ one-to-one and onto $E \setminus \Gamma$ and the polynomials are dense in $H^2(E \setminus \Gamma)$, then by [4, Corollary 3.5] φ must be univalent almost everywhere on $\partial \mathbb D$. This can be rephrased in terms of $\omega(\cdot, E \setminus \Gamma, z_0)$ to give us that the set of tangent points of Γ (see [3]) has one-dimensional Hausdorff measure equal to zero; but much more can be said. Indeed, if there exists one point z in Γ and a crescent Ω in $E \setminus \Gamma$, with multiple boundary point z, such that the bounded component of $\mathbb C \setminus \overline{\Omega}$ contains $\{z = x + iy : \min\{|x|, |y|\} \le 1\}$ and the polynomials are not dense in $H^2(E \setminus \Gamma)$. A consequence of this (cf. [1]) is that if there exists one point z in Γ such that from each side of Γ we can approach z through a cone in $E \setminus \Gamma$, then the polynomials are not dense in $H^2(E \setminus \Gamma)$.

6. **Theorem.** There exists a Jordan arc Γ that connects S to T such that the polynomials are dense in $H^2(E\backslash\Gamma)$.

Proof. By Lemma 5, it is sufficient to produce a Jordan arc Γ that connects S to T such that $-3/2 \notin \Gamma$ and 1/z can be approximated by polynomials in the $L^2(\omega)$ norm; $\omega := \omega(\cdot, E \setminus \Gamma, -3/2)$. A reasonable strategy for producing this Γ is to find a sequence of polynomials $\{p_n\}$ and a sequence of polygonal Jordan arcs $\{\Gamma_n\}$ such that

(a) for all n, Γ_n connects S to T, Re(z) > 0 for all z in Γ_n , and $\{\Gamma_n\}$ converges uniformly to a Jordan arc Γ that connects S to T;

(6.1) (b)
$$\int |1/z - p_k|^2 d\omega_n < 1/k \text{ whenever } 1 \le k \le n, \text{ where}$$

$$\omega_n := \omega_n(\cdot, E \setminus \Gamma_n, -3/2).$$

In fact, for convenience of proof, we shall choose Γ_n so that its angle of incidence with both S and T is $\pi/2$ and that the angle formed by Γ_n at any of its vertices is at least $\pi/3$. The limiting arc Γ is the one we are after.

Let $W_1 = \{z \in E : \operatorname{dist}(z, [1, 2]) < 1/8\}$. By Runge's Theorem, there is a polynomial p_1 such that

$$||(1/z-p_1)^2||_{E\setminus W_1} := \sup\{|1/z-p_1(z)|^2 : z \in E\setminus W_1\} < 1/2.$$

Now we construct Γ_1 . Let $\Omega_1 = \{1 - i/4, 5/4 + i/4, 3/2 - i/4, 7/4 + i/4, 2 - i/4\}$; obviously $5 = \text{cardinality of } \Omega_1 := |\Omega_1|$. Choose $0 < \varepsilon_1 < 1/16$ small

FIGURE 1

enough so that

(6.2)
$$5\left(\frac{-1}{\log(\varepsilon_1)}\right) < 1/(2\|(1/z - p_1)^2\|_{W_1}).$$

Let $K_1=([1+i/4,2+i/4]\cup[1-i/4,2-i/4])\setminus\bigcup_{z\in\Omega_1}B(z;\varepsilon_1)$, where $B(z;\varepsilon_1):=\{\zeta\in\mathbb{C}:|z-\zeta|<\varepsilon_1\}$. Now K_1 is a closed set with five components: $I_1(1),I_1(3),I_1(5),I_1(7)$, and $I_1(9)$, each of which is a segment. The numbering scheme is as follows: $I_1(j)\subseteq[1+i/4,2+i/4]$ for $j=1,5,9;I_1(j)\subseteq[1-i/4,2-i/4]$ for j=3,7; $Re(z)< Re(\zeta)< Re(\eta)$ whenever $z\in I_1(1),\zeta\in I_1(5)$, and $\eta\in I_1(9)$, and $Re(z)< Re(\zeta)$ whenever $z\in I_1(3)$ and $\zeta\in I_1(7)$. Connect the right endpoint of $I_1(1)$ to the left endpoint of $I_1(3)$, the right endpoint of $I_1(3)$ to the left endpoint of $I_1(5)$, the right endpoint of $I_1(5)$, to the left endpoint of $I_1(7)$, and the right endpoint of $I_1(7)$ to the left endpoint or $I_1(9)$, with segments $I_1(2),I_1(4),I_1(6)$, and $I_1(8)$, respectively. Let $\Gamma_1=\bigcup_{j=1}^9 I_1(j)$ (see Figure 1). Notice that Γ_1 is a polygonal Jordan arc that connects S to T, the angle of incidence of Γ_1 with both S and T is $\pi/2$, and the angle formed by Γ_1 at any of its vertices is at least $\pi/3$.

Now \overline{W}_1 is only accessible in $E \setminus \Gamma_1$ from z=-3/2 through five "gaps" in Γ_1 , each of size at most $2\varepsilon_1$. Consequently, by (6.2), Lemma 4, and Lemma 3(b), $\omega_1(\overline{W}_1) < 1/(2\|(1/z-p_1)^2\|_{W_1})$; $\omega_1 := \omega_1(\cdot, E \setminus \Gamma_1, -3/2)$. Therefore, since $\|(1/z-p_1)^2\|_{E \setminus W_1} < 1/2$, we have that

$$\int |1/z - p_1|^2 d\omega_1 < 1.$$

For $n \geq 2$, Γ_n is constructed inductively so that "over" each segment of Γ_{n-1} , Γ_n looks like Γ_1 . In order to construct Γ_n , certain other items need to be defined inductively. For $n \geq 2$, let

$$W_n = \{ z \in E : \operatorname{dist}(z, \Gamma_{n-1}) < \varepsilon_{n-1}/16 \}$$

and let

$$W'_n = \{ z \in E : \text{dist}(z, \Gamma_{n-1}) < \varepsilon_{n-1}/8 \}.$$

By Runge's Theorem there is a polynomial p_n such that $\|(1/z - p_n)^2\|_{E \setminus W_n} < 1/(2n)$. The substance of the inductive step is found in the construction of Γ_2 and so, for the most part, we focus our attention there.

Recall that $\Gamma_1 = \bigcup_{j=1}^9 I_1(j)$. For $1 \le j \le 9$, let $I_1^*(j)$ be the straight line that contains $I_1(j)$, and let $D_2(j) = \{z \in \mathbb{C} : \operatorname{dist}(z, I_1^*(j)) < \varepsilon_1/8\}$. For j = 2, 4, 6, 8, let $V_2(j, j+1) = D_2(J) \cap D_2(j+1)$ and $V_2(j, j-1) = D_2(j) \cap D_2(j-1)$. Let

$$W_2'' = W_2' \cup \left\{ \bigcup_{j=1}^4 (V_2(2j, 2j+1) \cup V_2(2j, 2j-1)) \right\}.$$

Notice that, unlike $\partial W_2'$, $\partial W_2''$ is a polygon. Moreover, since the angle formed by Γ_1 at any of its vertices is at least $\pi/3$, it follows that $\operatorname{dist}(z,\Gamma_1)<\varepsilon_1/4$ whenever $z\in W_2''$. We shall construct Γ_2 using $\operatorname{cl}\{E\cap(\partial W_2'')\}$.

Now $\partial V_2(j, j+1)$ [resp., $\partial V_2(j, j-1)$] is a parallelogram (j=2, 4, 6, 8). Let $a_2(j, j+1)$ [resp., $a_2(j, j-1)$] be the unique vertex of $\partial V_2(j, j+1)$ [resp., $\partial V_2(j, j-1)$] which is in $co(I_1(j) \cup I_1(j+1)) :=$ closed convex hull of $(I_1(j)\cup I_1(j+1))$ [resp., $co(I_1(j)\cup I_1(j-1))$]. Let $b_2(j,j+1)$ [resp., $b_2(j,j-1)$] be the unique point in $\partial D_2(j+1)$ [resp., $\partial D_2(j-1)$] such that the segment $[a_2(j, j+1), b_2(j, j+1)]$ [resp., $[a_2(j, j-1), b_2(j, j-1)]$] is perpendicular to $I_1^*(j+1)$ [resp., $I_1^*(j-1)$], and let $c_2(j, j+1)$ [resp., $c_2(j, j-1)$] be the unique point in $\partial D_2(j)$ such that the segment $[a_2(j, j+1), c_2(j, j+1)]$ [resp., $[a_2(j, j-1), c_2(j, j-1)]$] is perpendicular to $I_1^*(j)$. Let $a_2(0, 1)$ [resp., $a_2(10, 9)$] be the intersection of the component of $cl\{E \cap (\partial W_1'')\}$ that contains $a_2(2, 1)$ with S [resp., T], and let $b_2(0, 1)$ [resp., $b_2(10, 9)$] be the intersection of the component of $cl\{E \cap (\partial W_2'')\}\$ that contains $b_2(2, 1)$ with S [resp., T]. For $1 \le j \le 9$, if j is odd, then let $R_2(j)$ be the rectangle with vertices $a_2(j+1, j)$, $a_2(j-1, j)$, $b_2(j+1, j)$, and $b_2(j-1, j)$; and if j is even, then let $R_2(j)$ be the rectangle with vertices $a_2(j, j+1), a_2(j, j-1)$, $c_2(j, j+1)$, and $c_2(j, j-1)$. Call a rectangle $R_2(j)$ even if its a_2 -vertices are diagonal, and odd otherwise. Notice that $R_2(j)$ is even if j is odd, and odd if j is even.

With straight lines that are perpendicular to $I_2^*(j)$, partition $R_2(j)$ into congruent subrectangles so that the number of subrectangles is even [resp., odd] if $R_2(j)$ is even [resp., odd], the greatest dimension of any subrectangle is $\varepsilon_1/4$ (the width of $R_2(j)$) and the least dimension is no less than $\varepsilon_1/8$; it is possible to partition in this way because the length of any $R_2(j)$ is at least twice its width—see Figure 2 on next page (labeled in part). Let Ω_2 be the collection of points defined by:

- (i) $a_2(0, 1) \in \Omega_2$
- (ii) $z \in \Omega_2$ if and only if z is a vertex of some subrectangle of some $R_2(j)$ and the vertex diagonal to z in this subrectangle is in Ω_2 .

Now choose $0 < \varepsilon_2 < \varepsilon_1/16$ (for $n \ge 2$, $0 < \varepsilon_n < \varepsilon_{n-1}/16$) small enough so that

$$|\Omega_2|(-1/\log(\varepsilon_2)) < 1/(4||(1/z - p_2)^2||_{W_2}),$$

and let $K_2 = \operatorname{cl}\{E \cap (\partial W_2'')\} \setminus \bigcup_{z \in \Omega_2} B(z; \varepsilon_2)$. Notice that K_2 is made up of finitely many components, each of which is either a segment or a polygonal Jordan arc that is the union of two segments. In the same way that Γ_1 was pieced

FIGURE 2

FIGURE 3

together, construct Γ_2 by connecting, with segments, the right endpoint of the component of K_2 which contains $b_2(0, 1)$ to the left endpoint of the component which contains the vertex that is diagonal to $b_2(0, 1)$ in the subrectangle of $R_2(1)$ which has $b_2(0, 1)$ as a vertex, etc. (see Figure 3). The resulting arc Γ_2 is a polygonal Jordan arc whose angle of incidence with both S and T is

 $\pi/2$ and whose angle at any vertex is at least $\pi/3$. Moreover, any maximal segment of Γ_2 (i.e., a segment of Γ_2 that is properly contained in no other segment of Γ_2) has length at least $2\varepsilon_2$. Now since $\|(1/z-p_2)^2\|_{E\setminus W_2}<1/4$ and \overline{W}_2 is only accessible in $E\setminus \Gamma_2$ from z=-3/2 through $|\Omega_2|$ "gaps" in Γ_2 each of size at most $2\varepsilon_2$, it follows from (6.3), Lemma 4, and Lemma 3(b) that

$$\int |1/z - p_2|^2 d\omega_2 < 1/2,$$

where $\omega_2 := \omega_2(\cdot, E \setminus \Gamma_2, -3/2)$. Also notice that by our choice of Γ_2 , in order to access \overline{W}_1 in $E \setminus \Gamma_2$ from z = -3/2, one must pass through one of five gaps in Γ_2 , each of which represents a narrowing of one of the gaps in Γ_1 . Consequently,

$$\int |1/z - p_1|^2 d\omega_2 < 1.$$

For $n \ge 3$, p_n is chosen and Γ_n is constructed in basically the same way we chose p_2 and constructed Γ_2 .

Let us parametrize Γ_n . Define $\gamma_1\colon [0,1]\to \Gamma_1$ by $\gamma_1(x)$ is the point on Γ_1 whose distance along Γ_1 from S is $x\cdot[\text{length}\ (\Gamma_1)]$. Now we turn to Γ_2 . For j=2,4,6,8 let $a_2'(j,j+1)$ [resp., $a_2'(j,j-1)$] be the vertex of $\partial V(j,j+1)$ [resp., $\partial V(j,j-1)$] that is diagonal to $a_2(j,j+1)$ [resp., $a_2(j,j-1)$]. Notice that $a_2'(j,j+1)$ and $a_2'(j,j-1)$ are in Γ_2 . Now $\Gamma_2\setminus\{\bigcup_{i=1}^4\{a_2'(2i,2i+1),a_2'(2i,2i-1)\}\}$ has nine components; number them as to the order in which each is encountered when traversing Γ_2 from S to T. Define a continuous one-to-one function $\beta_2\colon \Gamma_1\to \Gamma_2$ by mapping $I_1(j)$ (recall that $\Gamma_1=\bigcup_{j=1}^9 I_1(j)$) onto the closure of the jth component of $\Gamma_2\setminus\{\bigcup_{i=1}^4\{a_2'(2i,2i+1),a_2'(2i,2i-1)\}\}$ in the same way that γ_1 maps [0,1] onto Γ_1 . Let $\gamma_2=\beta_2\circ\gamma_1$. Similarly, for any n, define a continuous one-to-one function $\beta_n\colon \Gamma_{n-1}\to \Gamma_n$ by mapping any maximal segment of Γ_{n-1} (i.e., a segment of Γ_{n-1} that is properly contained in no other segment of Γ_{n-1} to the part of Γ_n that "covers" the segment. Then let $\gamma_n=\beta_n\circ\gamma_{n-1}$.

Choose $\delta > 0$. Now there exists $N \geq 3$ such that $\varepsilon_{n-2} < \delta$. No maximal segment of Γ_{n-1} has length greater than $(3/4) \cdot \varepsilon_{N-2}$. So, by the construction of Γ_k and the definition of γ_k , if m, $n \geq N$ and $t \in [0, 1]$, then $|\gamma_m(t) - \gamma_n(t)| < \delta$. Therefore, $\{\gamma_n\}$ is uniformly Cauchy and hence converges uniformly to a continuous function $\gamma: [0, 1] \to \Gamma := \gamma([0, 1])$.

To show that γ is one-to-one, choose s and t in [0,1] such that $s \neq t$. By the definition of γ_n there exists N such that $\gamma_N(s)$ and $\gamma_N(t)$ are in nonadjacent maximal segments of Γ_N . Reviewing the construction of Γ_N , we find that $|\gamma_N(s) - \gamma_N(t)| \geq 2\varepsilon_N$. In fact, if $n \geq N+1$, then

$$|\gamma_n(s) - \gamma_n(t)| \ge 2\varepsilon_N - 2 \cdot \sum_{k=N+1}^n \frac{\varepsilon_n}{4^{k-N}} > \varepsilon_N.$$

Hence, $|\gamma_n(s) - \gamma_n(t)| \nrightarrow 0$ as $n \to \infty$, and so $\gamma(s) \neq \gamma(t)$. Therefore γ is one-to-one, and Γ is a Jordan arc.

We now have a sequence of polynomials $\{p_n\}$ and a sequence of polygonal Jordan arcs $\{\Gamma_n\}$ which satisfy (6.1)(a) and (b). Let $\omega := \omega(\cdot, E \setminus \Gamma, -3/2)$.

Since Γ_n converges uniformly to Γ , it follows that, for fixed k,

$$\int |1/z - p_k|^2 d\omega_n \to \int |1/z - p_k|^2 d\omega,$$

as $n \to \infty$; $\omega_n := \omega_n(\cdot, E \setminus \Gamma_n, -3/2)$. Therefore, because $\int |1/z - p_k|^2 d\omega_n < 1/k$ whenever $1 \le k \le n$, we have that

$$\int |1/z - p_k|^2 d\omega \le 1/k \to 0,$$

as $k \to \infty$. by Lemma 5, the proof is now complete. \square

7. **Theorem.** There exists a Jordan $\Gamma := \gamma([0, 1])$, where $\gamma(0) = 0$, $\gamma(t) \in \mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ for 0 < t < 1, and $\gamma(1) = 1$, such that the polynomials are dense in $H^2(\mathbb{D} \setminus \Gamma)$.

Proof (sketch). In a way similar to the proof of Theorem 4, we produce a sequence of Jordan arcs $\{\Gamma_n := \gamma_n([0,1])\}$ $(\Gamma_n \text{ having the same geometry as in the proof of Theorem 4), where <math>\gamma_n([0,1]) \subseteq \{z \in \mathbb{D} : \operatorname{Re}(z) > 0\}$ and $|\gamma_n(1)| = 1$ for all n, a sequence of points $\{t_n\}$, where $0 < t_n < 1$ and $|\gamma_n(t_n) - \gamma_n(0)| \to 0$ as $n \to \infty$, and a sequence of polynomials $\{p_n\}$ such that:

- (a) Γ_n converges uniformly to a Jordan arc $\Gamma := \gamma([0, 1])$, where $\gamma(0) = 0$, $\gamma(t) \in \mathbb{D}$ for 0 < t < 1, and $\gamma(1) = 1$;
- (b) $|p_n(\gamma_n(t_n))| \ge 1$ for all n, and $\int |p_k|^2 d\omega_n < 1/k$ whenever $1 \le k \le n$, where $\omega_n := \omega_n(\cdot, \mathbb{D}\backslash\Gamma_n, -1/2)$.

The limiting arc $\Gamma:=\gamma([0,1])$ will then have the property that, for all n, $\int |p_n|^2 d\omega \leq 1/n$ ($\omega:=\omega(\cdot,\mathbb{D}\backslash\Gamma,-1/2)$) and yet $|p_n(\gamma_n(t_n))|\geq 1$, where $\gamma_n(t_n)\to\gamma(0)$ as $n\to\infty$. So, $\gamma(0)$ is not an analytic bounded point evaluation for the polynomials with respect to the $H^2(\mathbb{D}\backslash\Gamma)$ norm, and hence nor is any point in $\partial(\mathbb{D}\backslash\Gamma)$. Following an argument similar to the proof of Lemma 3, we get that the polynomials are dense in $H^2(\mathbb{D}\backslash\Gamma)$. \square

8. Remark. Theorems 4 and 5 provide us with new examples of analytic Toeplitz operators T_{φ} , where φ is a Riemann map from the unit disk $\mathbb D$ onto $E \setminus \Gamma$ (of Theorem 4) or onto $\mathbb D \setminus \Gamma$ (of Theorem 5), such that T_{φ} is cyclic (with cyclic vector 1) and yet φ is not a weak-star generator of H^{∞} (cf. [8]).

There is unfinished business here, and yet very little of it is easily approachable.

- 9. **Problem.** Find a condition on Γ which is both necessary and sufficient for density of the polynomials in $H^2(\mathbb{D}\backslash\Gamma)$, where $\Gamma:=\gamma([0,1])$ is a Jordan arc such that $\gamma([0,1))\subseteq\mathbb{D}$ and $\gamma(1)=1$.
- 10. Question. Does there exist a Jordan arc Γ , with endpoints 0 and 1, such that the polynomials are dense in $L_a^2(\mathbb{D}\backslash\Gamma, dA)$?

ACKNOWLEDGMENT

The author is grateful to Daniel Luecking for pointing out some useful references and to the referee for helpful suggestions.

REFERENCES

- 1. J. Akeroyd, Polynomial approximation in the mean with respect to harmonic measure on crescents, Trans. Amer. Math. Soc. 303 (1987), 193-199.
- 2. _____, Point evaluations and polynomial approximation in the mean with respect to harmonic measure, Proc. Amer. Math. Soc. 105 (1989), 575–581.
- 3. C. J. Bishop, L. Carleson, J. B. Garnett, and P. W. Jones, *Harmonic measures supported on curves*, Pacific J. Math. 138 (1989), 233-236.
- 4. P. S. Bourdon, Density of the polynomials in Bergman spaces, Pacific J. Math. 130 (1987), 215-221.
- 5. J. Brennan, Point evaluations, invariant subspaces and approximation in the mean polynomials, J. Funct. Anal. 34 (1979), 407-420.
- 6. P. L. Duren, Theory of H^p-spaces, Academic Press, New York, 1970.
- 7. T. W. Gamelin, Uniform algebras, 2nd ed., Chelsea, New York, 1984.
- 8. R. C. Roan, Composition operators on H^p with dense range, Indiana Univ. Math. J. 27 (1978), 159-162.

Department of Mathematics, University of Arkansas at Fayetteville, Fayetteville, Arkansas 72701