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TRIGONOMETRIC POLYNOMIALS AND LATTICE POINTS

J. CILLERUELO AND A. CORDOBA

(Communicated by J. Marshall Ash)

Abstract. In this paper we study the distribution of lattice points on arcs of

circles centered at the origin. We show that on such a circle of radius R , an arc

whose length is smaller than v^-R1/2-1'4'"1/2^2' contains, at most, m lattice

points. We use the same method to obtain sharp L4-estimates for uncompleted,

Gaussian sums

I. Introduction and statement of results

Let us denote by r(n) the number of representations of the integer n as

a sum of two squares, i.e., r(n) is the number of lattice points on the circle

x2 + y2 = n . This function plays an important role in the arithmetic of Gaus-

sian integers and it satisfies the relation r(n) = 4^2d, Xi(d), where Xi is the

nonprincipal character ( mod 4).

It is a well-known fact that a*(aa) = 0{ne) for every e > 0, and that a-(aa) is

not 0((logAi)c) for any c. However the distribution of values of r(n) is rather

irregular. The function R(n) = Ylk<n r(k) has also been considered, and it was

observed by Gauss that R(n) = nn + E(n), with E(n) = 0(nx/2). To find the

true order of magnitude of the error term 7s (aa) is an outstanding problem in

the number theory, i.e., the well-known lattice point problem.

There is a result attributed to Heron of Alexandria which says: in any triangle,

the product of the lengths of its three sides is equal to four times the area of the

triangle multiplied by the radius of the circumscribed circle: abc = 4AR. This

theorem has the following application: If v\,v%, v?, are three lattice points on

the circle x2 +y2 = R2 , then max{||z^i - u2\\, \\vx - a^3|| , \\v2 - a^3||} > 27c'/3.

In particular, an arc of length 27?'/3 contains, at most, two lattice points. This

fact was first observed by Schinzel and used by Zygmund [ 1 ] to prove a Cantor-

Lebesgue theorem in two variables.

Therefore it is a natural question to ask for which exponents a there exists a

finite constant Na satisfying the condition that any arc of length Ra , in a circle

centered at the origin and radius 7?, contains at most Na points uniformly

in 7?.
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In this paper a new method is introduced to prove that the answer to this

question is affirmative for every a < ¿ . More precisely, we have

Theorem 1. On a circle of radius R centered at the origin, an arc Y whose length

is not greater than \Í2RX¡2~xI^ml"^+T), contains, at most, m lattice points.

Gaussian sums are an important object in number theory. It is known that

E
N<k<2N

2nik2x Nx'2    for 1 < p < 4

¿"[0,1]

and that the weak-L4 estimate also holds:

p<x: E
N<k<2N

2nik x >a>0V <C
N2

where C < co is some universal constant and p denotes Lebesgue measure.

In the other direction, we have the equivalence

£
,2nik2x

N<k<2N

~Nx'2(logN)x/4,

£"[0,1]

N

It is not difficult to observe that

E
N<k<N+N'

2nik2x (2N2a)x'4 + 0(l)   for every a <-.

¿"[0,1]

The method introduced in the proof of Theorem 1 allows us to provide

estimates of this type for every a,

Theorem 2.

< a < 1

/'Jo
E

N<k<N+N°

2nik2x dx = 2N2a + 0(N 3a-l+£

for every e > 0 and a,  i < o < i.

)

II. Proof of Theorem 1

A. Preliminary remarks and notation. Let us recall the known fact that r(n) =

4 J2d,nX\{d) = 4{dx(n) - úÍ3(aa)} , where dy, 7 = 1,3, denotes the number of

divisors of aa which are conjugent with j module 4. The factor 4 takes into

account the symmetry of the lattice.

If aa = 2V Ftp =i(4)7^ 0^=3(4) lik 's tne Prrme factorization of the integer

aa , then a"(aa) = 0 unless all the exponents p\ are even. In that case we have

r{n) = 411(1 + aj).
We also have the composition formula given by multiplication in the ring of

Gaussian integers: If a2+b2 = n and c2+d2 = m , then (ac-bd)2 + (ad+bc)2 =

mn . That is, in terms of norms we have N(a + bi) — n and N(c + di) = m

imply that N((a + bi)(c + di)) = mn . Furthermore, if (m, n) = 1 then each
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representation of mn as a sum of two squares arises from decompositions of

m and aa given by the formula above. Therefore we shall associate lattice

points with Gaussian integers: a2 + b2 = n determines a Gaussian integer

a + bi = \[h~e2ni<b for a suitable phase O.
We have

(i) r(2v) = 4 and there are two possible situations, namely, v is even, in

which case 2V = 0 + (±2V'2)2 = (±2V>2)2 + 0 or v is odd, and then 2V =
(±2I"/21)2 + (±2K2])2 .

That is, the Gaussian integers corresponding to the four representations of

2" as a sum of two squares are the following:

2vl2e2ni{<s>0+ti4) (        / = 0, 1,2,3,    where On = {
0     if v is even,

\     if v is odd .

(ii) If q = 3(4) is a prime number, then r(q2ß) = 4 and the representations

are given by

q2ß = O2 + (±qß)2 = (±qß)2 + O2,

i.e., they correspond to the Gaussian integers qße2n"/4 , t = 0, 1,2,3.
(iii) If p = 1(4) is prime, then r(pa) = 4(1 + a).

Furthermore if p = a2 + b2 , a + bi = y/pe27"® , a, b > 0, then the represen-

tations of pa as a sum of two squares are given by pa/2e2n'^'s'+'/^ where

t = 0, 1, 2, 3 and y describes the set Aa = {y £ Z, \y\ < a, y = a
(mod 2)}.

(iv) We can summarize the previous observations in the following manner.

If aa = 2" Y\p =x(4)P]J Ylqk=3{4) ^k ^e11 tne Gaussian integers corresponding to

the 4fT(l + <*j) representations of aa as a sum of two squares are given by the

formula

(*) ^W{%+£y«V«/4>( , = 0,1,2,3,

where y¡ describes the set AQ; and i>o = 0 or \ depending upon the parity

of v.

Remark. The angles G>; corresponding to different primes p; = 1(4) are lin-

early independent over the rationals, i.e., a relation Y^x<j<Naj(^j + ao = 0»

with coefficients a, £ Q, implies necessarily that ao — ax = • • • = a^ = 0.

B. End of the proof. Let us suppose that for the integer

«o=2" n p? n $k
Pl=\(4)    9t=m

there is an arc, in the circle of radius 7?o = y/ño centered at the origin, which

contains more than m points and whose length is \Z2Rq . Then, formula (*)

implies that the same must be true for the circle of radius 7? = \fñ, where

n = WjP"' ■ That is, we may assume the existence of m+1 lattice points in such

an arc of this circle. They will have representations ^/Tie2ni^L'ySi'i>i+tSIA'', s =

l,2,...,m+l,  ysj£{y£Z,   \y\<aj,  y = a;(2)},   and ts £ {0, 1, 2, 3} .
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For each pair s / s' of such points, let us consider the quantity

ts - ?'

v-'-Yl{fj-'yf} +

= 2  5> y) - y)+

and observe that the y*,'* = (ysj - yf)/2 take always integer values.

We have two cases to consider, depending upon the parity of ts and ts' :

(1) if ts = ?'{2), then (ts - ts')/S = ts<s'/4 for some integer ts-s' ;

(2) if ts jé ts'(2), then (ts - ts')/8 = | + ts-s'/4 for some integer ts's'.

In the first case, formula (*) shows that 4,s'J'/2 is the angle corresponding
\ys's'\

to a representation of TJ, />,;      as a sum of two squares.

\ys,s'\

The second case corresponds to a representation of 2 fT; P7 J

If *Pi'i72 is an integer, then the linear independence of {1, <Pj, G>2, ...}

over the rationals, implies that f5 = i5' and ys¡ •s = 0 for every j, so that finally

s = s'. Thus we have the following result. If s ^ s' then |||vP'i72||| > 0 > where

| HI denotes distance to the integers.

Our previous considerations show that if s ^ s', then *F'S72 is the angle

of a lattice point not on the x axis, but on the circle of radius

r'2 X\pï's l/2 where " - °or v = '*•

Therefore we have
»J/Í ,s

>
1

\frs 1/2
27rv^njP;;

by a simple argument.

On the other hand, our hypothesis on the location of the m + 1 lattice points

on an arc of length \/2Ra , implies the following inequality:

litt, s

<
1

2n\Í2
Ra-

We have aaa(aaa + l)/2 couples s, s'. Multiplying all these inequalities, we get

1 1D(a-l)m(m+l)/2
>

Us,s-UjPJ
\ysys I

lijPj
Zs,s'\ysfs\

1/2-

Next we want to estimate the maximum value of the sum

1
Ei^'i^Ei^i
s,s1 s,s'

where, as was stated before, yj takes values in the set {y £ Z ,  \y\ < ctj,  y

aj(2)}.



TRIGONOMETRIC POLYNOMIALS AND LATTICE POINTS 903

If m + 1 is even, the maximum value is obtained when (m + l)/2 of the

numbers ys¡ are equal to a7 and the remaining (m + l)/2 are -a¡.

If m + 1 is odd, then the maximum takes place when (m + 2)/2 of the yj

are equal to aj and the remaining aaa/2 are -ay. Therefore,

0|,j,í'i!,     (w+ l)2-ô(m)

where

f 0 if m is odd,
o(m) — { ,.

1 if am is even.

We obtain

> -'/2
\2_j¡j(a-l)»i(»i+l)/2 >   ( TT _a>((«+l) -<5(m))/4 1 _ ^-((w+l)2-á(m))/4

which yields

(AAA+ l)2-¿(m)       1 1
a > 1 -

2w(m+l) 2     4[aaa/2] + 2

and this completes the proof of Theorem 1.

Here, as in the rest of the paper, we have used the standard notation [x] to

denote the integer part of the real number x .

III. Proof of Theorem 2

Let ra(n) = Card{(/z, k) £ Z2 : n = k2 + h2,  N < k, h < N + Na} . Let
Cj = {aa: ra(n) = j}. Then

Jo
E

N<k<N+N°

4

2nik2x dx= £A-2(AA) = £;2Card(Q)

« j

- Card(C!) + 4Card(C2) + ^ j2 Card(C/).

7>3

Observe that Card(Ci) < [Na], because the lattice points corresponding to

points of Ci necessarily lie on the diagonal, i.e., h = k .

Our next step is to compute X)_/>3 J2 Card(Cy).

Let aa £ (J >3 Cj. Then aa admits two different representations as a sum of

two squares which are not placed symmetrically with respect to the diagonal of

the first quadrant.

Let y/ñe2n'^', s/ne271'®1 be the Gaussian integers corresponding to such

points, where

°' = E^ + ï>       *=1«.2,
j

and we have used the notation of the previous theorem.
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We have

(<D'±<D2)= 5> (y) ± y])    (tx±t2)

0>' -$2

teV< 4^ arctg
N + Na

(Oi+<p2)      ,

ÏSFV<-^arctg

¿V
N + Na

2

arctg

+

TV

7V + 7V'

A'
arctg

_\<i_AAa-.5
« J      27T

-1 < -!-/VQ
a J      2rcTV + TV0

(i) If í'-í2 is even, then (<&x-<S>2)/2 and (0>1+O2)/2 are angles correspond-

ing to representations of integers dx, d2, respectively, such that dxd2 = n ,

dx=a2 + b2,        0<bx<Na-xax,

d2 = aj + b¡,        0<\a2-b2\<Na-[a2.

Observe that a2 = b2 implies (O1 + <I>2)/2 - | = 0, i.e., the two repre-

sentations of aa are symmetric with respect to the diagonal; bx = 0 implies

(0)i -|- 0>2)/2 = 0, i.e., the two representations of aa are the same.

(ii) If tx - t2 is odd, then (0>' - 0>2)/2 + ±, (0>> + 0>2)/2 + | are angles

corresponding to representations of dx, d2 such that dxd2 = n ,

dx=a\ + b2x,        0<\ax-bx\<Na-xax,

d2 = a2x+bl,        0<b2<Na-xa2.

In any case, given aa g Uj>3 Cj , we have a decomposition n - dxd2 such that

dx=a\ + b2x,     0<bx<Na-xax,

d2 = a¡ + b¡,    0<\a2-b2\<Na~xa2.

The number of pairs dx, d2  satisfying the conditions above gives an upper

bound for Card(U7>3 Cj).

With dx fixed we estimate the cardinality of the set of numbers d2 such that

d2 = a\ + b\ ,

i.e.,

< \lal + b2< -

0 < \a2 - b2\ < Na~xa2,        V2N < sfa\I2 < \Í2(N + Na),

V2N       f-2——     J2N,—= < yja2 + b2<—=
V«i v"i

To do it we observe that if we fix a2, then there are 0(Na~xa2) integers a>2

such that \a2 - b2\ < Na~xa2 and since Ja2 + b2 ~ \Í2a2 ~ \/2N/s/d¡, we

have that for dx  fixed, there are at most Na-X(N/sfcT\)(Na/y/dx) = N2a/dx

integers d2 satisfying that set of inequalities. Therefore,

cardA(jc,uv:   e   £rp
jf>3        J a,<V0<ft,<V'>-'a2

<N 3a-1 log TV.

On the other hand, clearly

53r*(n) = Card{(k, h): N < k , h < N + Na} = N2" + 0(Na)
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and

¿2 r«(") * ECard(c;) = Card(Ci) + 2Card(C2) + O I Ne Card ( (J Cj

" j \ \j>i
for every e > 0.

Thus
N2a

Card(C2) = ~- + 0(Na + N3a~x+e)     for every e > 0

which yields the theorem.   D

Remarks. Theorem 1 was motivated by the search for a direct connection be-

tween the restriction properties of Fourier integrals and those of Fourier series

coefficients to circles. We have some evidence that a = | is sharp, but we have

no proof.

It would be interesting to obtain a version of Theorem 2 with coefficients: is

E   a*e
N<k<N+N«

2nik2x = (5>i01/2

uniformly in TV ?
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