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IMBEDDING OF ANY VECTOR FIELD
IN A SCALAR SEMILINEAR PARABOLIC EQUATION

P. POLÁCIK

(Communicated by Barbara L. Keyfitz)

Abstract. The scalar semilinear parabolic equation

ut = Au + f(x, u, Vu),        xeíi, t>0,

on a smooth bounded convex domain Si c M.N  under Neumann boundary

condition

(2) — = 0    on dii

is considered.
For any prescribed vector field H on M.N , a function / is found such that

the flow of (1), (2) has an invariant A^-dimensional subspace and the vector

field generating the flow of (1), (2) on this invariant subspace coincides, in

appropriate coordinates, with H .

Introduction

Consider the boundary-value problem

(1) ut = Au + f(x,u,Vu),       xeQ., t>0,

(2) p. = 0    onöQ,
On

where Q c R^ is a bounded domain with smooth boundary dQ, /t is the unit

normal vector field on ôQ pointing out of Í2, and /: il x E x 1* -» I is of

class C1 . This problem defines a local dynamical system on the Sobolev space

X := W2-P = {ue W2'p: u satisfies (2)},       p > N

(see [Hel, Am]). Though this is an infinite-dimensional dynamical system, it is

generated by an equation with special structure, and it is not immediately clear

whether some sort of complicated dynamical behavior can be encountered in

it. In one dimension (A — 1), for example, bounded trajectories of equations

of this type are known to exhibit a very simple behavior, as t approaches

infinity. One finds only convergence to equilibria [Ze, Ma] or a kind of Poincaré-

Bendixson theorem, if nonseparated boundary conditions are admitted [F-M].
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In this sense, the dynamics of such equations is no more complicated than

the dynamics of planar systems. Another result (the Morse-Smale property),

which significantly reduces the variety of dynamical systems defined by the

one-dimensional problems, has been proved in [An, He3].

On the other hand, in [F-P] a simple nonlocal equation (more specifically,

an equation involving a spatial integral of the unknown function) in one space

dimension has been shown for which the dynamics can be rated as complicated.

In [Po2], our attempt was to show that one can give a similar rate to local

equations (1) in higher space dimension. We have proved in that paper, that

any finite jet of an arbitrary A-dimensional vector field can be realized in an

equation ( 1 ) on a ball £lcRN , under Dirichlet boundary condition

i"t\ ,, n
(3) "|en=°-

In other words, for any integer k > 0 and any Ck vector field H on E^

with H(0) = 0, one can find a function / such that (1), (3) has an invariant

A-dimensional manifold through the equilibrium u = 0, and the Taylor expan-

sion of the vector field given by the flow of (1), (3) on this invariant manifold

coincides, in appropriate coordinates, with the Taylor expansion of H, up to

kth order terms. A consequence of this result is that a hyperbolic invariant

(A - l)-torus can be found in (1), (3). One would also expect some sort of

chaos to occur in (1), (3).

The method of [Po2] can be easily modified to obtain the same result for

Neumann problem (1), (2). However, for this problem a significantly stronger

property can be established using a simpler procedure. In this paper we prove

that any A-dimensional vector field (not just its finite jets) can be imbedded

in (1), (2). This result show that "chaos is present" in the equations of the

given class. If A > 3, we can e.g., imbed in (1), (2) a horseshoe of Silnikov's

example (see [Si, G-H]) or a system with the Lorenz attractor (see [G-H]). Let

us point out, however, that trajectories with more interesting behavior are in a

sense exceptional (and hence can be hardly "observed"). Due to monotonicity

of the semiflow of (1), (2), most trajectories converge to an equilibrium [Pol].

The proof we present here is rather elementary (we do not work with per-

turbations of the center manifold as in [Po2]) and constructive (we give an

explicit expression for the equation (1) in terms of the prescribed vector field).

Moreover the result is valid for any convex (or at least starshaped) domain.

2. Statement of the result and proof

Recall that Q is starshaped if there is a point q such that the segment joining

x eCl and q lies entirely in Q. In the sequel we assume that Í2 is starshaped

with the origin q — 0 having the above property. Note that this implies that

for any x e dil the vector x = x - 0 satisfies

(4) (x, i(x)) :— xx*x(x) H-\- xN/iN(x) > 0.

A subspace W c X is said to be invariant for (1), (2) if for any solution

u(t, x) of (1), (2) with the initial condition u(0, •) e W one has u(t, •) eW

for any / in the interval of existence of «(/,■)• If W = span{c/>i ,...,</>#} is

an A-dimensional invariant subspace and H e Cl(RN ,RN), we say that the
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flow of (1), (2) is generated by H, if for any trajectory c(t) - (cx(t), ... , cN(t))

of the equation

c = H(c)

the function

u(t ,X) = C\ (t)<px (x) + ■ ■ ■ + cN(t)(pN(x)

is a solution of (1), (2).

Theorem. There exist functions cpx(-), ... , <Pn(-) c X with the property that for

any H e CX(RN, RN) there is an f e C'(Q x M") such that the subspace

W := span{c/>i, ... , </>#} is invariant for (I), (2) and the flow of (I), (2) on W

is generated by H.

The proof, which we give after some preliminary remarks, uses the following

simple observation: The space W = span{c/>i, ... , (¡>n} is invariant for (1), (2)

and the flow of (1), (2) on W is generated by H = (hx,..., hpj) if and only if

N / N N \

(5) ^2(hi(c)4>i(x) - CiA<p¡(x)) = f[x,J2dMx), ¿2CiV<pi(x)
i=\ V        ;=1 i=l /

for each x e Q, eel*. Denoting the left-hand side of (5) by g(x, c), we

can write (5) as

(6) g(x, c) = f(x, cM(x)),

where M(x) is the Nx(N + I) matrix defined by

/cpx(x) VMx)

(7) M(x) = :

\<Pn(x)        V(pN(x)

So our task will be to choose (¡>x(-), ■■■ , 4>n(-) e X such that for any H, one

can find an / such that the identity (6) holds true. The form of (6) suggests the

following way to achieve this aim. Suppose that / = f(x, y) does not depend

on u. Then (6) reads

g(x, c) = f(x, cJ(x)),

where
/Vcpx(x)

J(x) = :

\V<Mx)

Thus if J(x) were a regular matrix at each x e Q, we could simply define

f(x,y):=g(x,yJ-x(x)).

Of course, this attempt fails at the fact that, because of the Neumann boundary

condition, J(x) cannot be regular at x e dil. However, one can achieve that

at each x e Q, one of the A x A submatrices of M(x) is regular. Then one can

use the above definition of /, with J(x) replaced by some submatrix of M(x),

at a finite number of different regions, and then match everything together by

a partition of unity. This is the outline of the proof which we carry out below.

Note that a similar idea is not applicable to Dirichlet boundary condition (3).
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For if <px, ... , tpfif satisfy </>, |öii = 0, then the matrix M(x) has rank at most

1 at any x e dQ.
The proof of the theorem consists of the following two steps.

Step 1. We prove that if (f>x, ... , 4>n € X n C3(Í2) are such that the matrix

M(x) defined by (7) has rank A at each x e Q, then the assertion of the

theorem holds for the 4>i ■

Step 2. We find functions <px, ... ,<pn satisfying the hypothesis of Step 1.

Proof of Step 1. For i - 0, ... , A, let M¡(x) denote the A x A matrix ob-
tained from M(x) by omitting the (i + l)th column. Let

Q,= {xeU: detM,(x)^0}.

Since M(x) has rank A everywhere, at each x e Q. one of the matrices M¡(x)

has nonzero determinant. Hence Í!,, / = 1, ... , A, is a covering of Q. Let

pi(x), i = 1, ... , A, be a smooth partition of unity on Q. subordinate to this

covering (see [Hi]). (Note that Q is a smooth manifold with boundary and, by

continuity, the Q, are open in Q,.)

Now, let H == (Ai,..., hN): RN -* RN be an arbitrary C'-function and let

g(x, c) denote the left-hand side of (5). We define a function / such that (6)

holds true.
For any x e Q and (u, y) e RN+X put

N

f(x, u,y) = J2f(x, u,y{, ... , y¡-x, yi+l, ■■■ , ̂ ) + fo(x, y\, ... ,yN),
i=i

where

f(x, z) = f(x, Zx, ... , ZN)
I Pi

if x £ Q,,

(x)g(x, zM~x(x)),     ifxeQi

(M¡~x(x) is the inverse matrix to M¡(x)). Since g e C'(H x RN), M~x(x)

is of class C2 in x e Í2, (because the 0, are of class C3),and p¡ is smooth

with compact support in Í2,, we have f e Cx(Qx RN). Further,

N N

f(x, cM(x)) = ]T f(x, cMj(x)) = Yl Pi(x)g(x, c) = g(x, c),
¡■=o /=0

i.e., (6) holds for any x e Q, c eRN . This completes Step 1.

Proof of Step 2. First observe that it is sufficient to find <p, e C¿(f¿) = {u e

C\(Çï): u satisfies (2)} such that the rank-A property

_
(r-A) rankM(x) = A    for any x e f2

holds. Indeed, (r-A) is an open property in the C1-topology. In other words, if

(px, ... , <t>N e C^(Q) have the property (r-A), then so do any sufficiently small

C-perturbations \px, ■■■ , Wn ■ Now since C¿(f2) is dense in C¿(f2), one can

choose these perturbations in C¿(Í2).
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Below, functions </>,- will be defined as the coordinate functions <f>¡(x) = x¡
and modified near dQ,. For this we introduce functions d(x), Yl(x) which

define the normal coordinates near dQ. Let

d(x) := ±dist(x, dCi),     - if x e Q, + if x £ Q,

and

Br(dQ):={xeRN: \d(x)\ < r}.

For x e Br(dil) let n(x) denote the point of dCl nearest to x. If r > 0 is
sufficiently small, then n(x) is well defined and both

d(x) : Br(dil) -* (-r, r)    and    U(x) : Br(dQ) -* ¿?Q

are of class C2 (any class Ck can be achieved, by making r smaller). We now

list some other properties of d(x) and n(x), which will be used below. For

the proofs we refer the reader to [He2, G-T]. One has

(8) n(x) = x,        d(x) = 0,     forxedQ,

and

(9) \Vd(x)\ = l    in Br(dO),

where | • | is the Euclidean norm. For any ô e [0, r), the set

cis:={xeRN:d(x)<-ô}

is a subdomain of Q. with the C2 bundary

(10) diis = {xeQ:d(x) = -S}.

The boundaries dQg and dQ axe "parallel" in the sense that dCl¿ is a constant

section of the normal bundle on 9Q:

(11) dSls = {x-ô^(x):xedÇi}.

For any x e dilg , Vd(x) is the unit normal vector to dÇl6 pointing out of

Q<5. In particular,

(12) Vd(x)=*(x)    foxxedCl.

Further

(13) Yl(x-Ssi(x)) = Yl(x)

and

(14) Vd(x-ô*(x)) = Vd(x),      foranyx€öQ.

We now define functions ç6,(x) by

0(x):=(cAi(x), ... ,<I>n(x))

(15) Jx,      for xeds,

(16) ~{Yl(x) + ß(d(x))Vd(x),     forxeñ\Q,5,

where S e (0, r) and ß : [S, 0] —► R is a smooth function with the following

properties

(i) ß(-S) = -S,
(ii) ß'(-S) = 1,
(iii) 0'(O) = O,
(iv) ß(0)e(0,o),
(v) ß' > 0 in [-Ô, 0).
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We prove that if S is sufficiently small (as will be specified later), then the </>,

have the required properties.

First we check that the </>,■ are C'-functions. This is assured by (i), (ii).

Indeed, by (i), (11), (13), and (14), the functions in (15) and (16) coincide on
diïs and therefore they have the same derivatives in the direction tangent to

dCls • Using (ii), (9), (13), (14), we find that these functions also have the same

derivatives in the normal direction Vd(x), x e <9fi (notice that (9) implies

V2 d(x)[V d(x) ,<• ] = 0). It follows that fc eCx(Q).
Next, (iii) implies that the </>,- satisfy the Neumann boundary condition.

It remains to verify the rank-A condition (r-A). It is obvious that M(x)

has rank A for any x e Q¿ . For the other case, x e fi \ Q.¿ , we first calculate

the derivative of the mapping x h^ <P(x) . For any vector v e RN we have

(17) (D&(x))v = (Dn(x))v + ß'(d(x)){Vd(x),v)Vd(x) + ß(d(x))(JT(x)v),

where ( •, • ) is the usual scalar product on RN and ß?(x) is the operator

on RN whose matrix (in the standard basis) is V2 d(x). Obviously, ß?(x) is

selfadjoint and, by (9),

JP(x)(Vd(x)) = 0    fox any x e Br(dQ.s).

It follows that the range R(^(x)) of M?(x) is orthogonal to Vd(x) :

R(^(x))cVx:={Vd(x)}±.

By (14), we have

Vx:={Vd(Yl(x))}±,

i.e., Vx is the tangent space to du, at n(x).

We now prove that Z)<I>(x) is surjective for any x e Ci \ Q¿ , which implies

that M(x) has rank A for any such x .

Realizing that Z>n(x) is the orthogonal projection onto Vx , we find an e > 0

such that the restriction

(DYl(x) + a^(x))\Vx: Vx - Vx

is an isomorphism for any x e Br(dCl) n Q and any |a| < e. The fact that

e can be chosen independent of x follows from the continuity of %?(x) on

the compact set Br(di\) (possibly after making r smaller). Thus if 0 < ô <

min{e, r} , then \ß(t)\ < e for each t e [-a, 0] (see (iv), (v)) and therefore

D<S>(x)\Vx = (DYl(x) + aß?(x))\Vx

is an isomorphism onto Vx . Since we further have

DQ>(x)(Vd(x)) = ß'(d(x))Vd(x),

we conclude, taking (v) into account, that for x e Q \ Q¿ the range R(D<t>(x))

contains Vx , as well as the orthogonal space span{Vci(x)} . This shows that

Z)O(x) is surjective. Consequently, the Jacobi matrix of the functions <px, ... ,

(¡)n has rank A, therefore M(x) has rank A for each x e Q \ Q¿ .

We are left with the case x e ¿Q . For such an x , we have, by (iii) and ( 17),

that DO(x) is selfadjoint and R(D<t>(x)) = Vx . Clearly, M(x) has rank A if
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the vector O(x) does not belong to Vx . But this is indeed the case, because,

by (8), (12), (iv), and (4), we have

(<D(x), *(*)) = (<D(x), V d(x)) = (Yl(x), V d(x)) + ß(0)

= {x,n(x)) + ß(0)>0.

We have proved that with the above choice of S and <f>x, ... , </>#, the property

(r-A) holds true. The proof of the theorem is complete.

Remarks. (1) Note that the last inequality is the only place where starshaped-

ness of Q has been used (referring to (4)). One can easily see that the above

construction still comes through if Q is merely "close" to a starshaped domain.

We did not try to find a general construction to include any smooth domain. It

would have to be more involved and, yet, the result would not be a significant

extension. Presence of complicated dynamics for equations on simple domains

(starshaped, convex) is certainly more interesting.

(2) The above construction of the có,   is much simplier if Q is the ball

{x: |x| < 1} . The reader can easily verify that the functions

Mx) = ß(\x\)^,        i=l,...,N,

where ß is a smooth function satisfying

ß(r) = r,      for r e [0, 1/2],

ß'(r)>0,      for re [0,1),

have all the required properties.

References

[Am] H. Amann, Existence and regularity for semilinear parabolic evolution equations, Scuola

Norm. Sup. Pisa Cl. Sei. (4) 11 (1984), 593-696.

[An] S. B. Angenent, The Morse-Smale property for a semilinear parabolic equation, J. Differential

Equations 62 (1986), 427-442.

[F-M] B. Fiedler and J. Mallet-Paret, A Poincaré-B'endixson theorem for scalar reaction diffusion

equations, Arch. Rational Mech. Anal. 107 (1989), 325-345.

[F-P] B. Fielder and P. Polácik, Complicated dynamics of scalar reaction diffusion equations with

a nonlocal term, Proc. Roy. Soc. Edinburgh 115A (1990), 167-192.

[G-T] D. Gilbarg and Trudinger, Elliptic partial differential equations of second order, Springer-

Verlag, Berlin, 1977.

[G-H] J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations

of vector fields, Springer-Verlag, New York, 1983.

[Hel] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., voi.

840, Springer-Verlag, New York, 1981.

[He2] _, Perturbation of the boundary value problems for partial differential equations, Sémi-

naire Brasileiro de Analise, Trabalhos Apresentados Nr. 22, 1985.

[He3]    _, Some infinite-dimensional Morse-Smale systems defined by semilinear parabolic equa-

tions, J. Differential Equations 59 (1985), 165-205.

[Hi]       M. W. Hirsch, Differential topology, Springer-Verlag, New York, 1986.

[Ma] H. Matano, Convergence of solutions of one-dimensional semilinear parabolic equations, J.

Fac. Sei. Univ. Tokyo 30 (1984), 221-227.



1008 P. POLÁClK

[Pol] P. Polácik, Convergence in smooth strongly monotone flows defined by semilinear parabolic

equations, J. Differential Equations 79 (1989), 89-110.

[Po2] _, Complicated dynamics in scalar semilinear parabolic equations in higher space dimen-

sion, J. Differential Equations 89 (1991), 244-271.

[Si] L. P. Silnikov, A contribution to the problem of the structure of an extended neighborhood of

a structurally stable equilibrium of the saddle-focus type, Math. USSR-Sb. 10 ( 1970), 91 -102.

[Ze] T. J. Zelenyak, Stabilization of solutions of boundary value problems for a second order

parabolic equation with one space variable, Differential Equations 4 (1968), 17-22 (trans-

lated from Differentsial'nye Uravneniya).

Institute of Applied Mathematics, Comenius University, Mlynska dolina 842 15

Bratislava, Czechoslovakia


