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Abstract. We shall study the behavior of the analytically continued resolvent

operator R+(k) for perturbations of -A in a neighborhood of k = 0 . As an

application, making use of Vainberg's argument, we shall show the local energy

decay of solutions to generalized wave equations whose stationary problems are

not positive definite.

1. Introduction and results

In this paper we shall study the behavior of the analytically continued resol-

vent operator R+(k) near k = 0 of the following problem:

(L - K2)u = -a(x)[djajk(x)dk - q(x)]u - k2u = f    in Q,

0     ondil,
1.1]

UL-H

1 Bu =

where Q is R" or an exterior domain of Rn (n > 3) with the C2-class

boundary ôQ and B is either the Dirichlet boundary condition or the third

boundary condition of the form Bu = v¡(x)üjkdku-\- a(x)u with the unit outer

normal vector v(x) = («i, ... , v„) at x e dil. Assumptions on the coefficients

of L and B are as follows:
(1.2) The function a(x) is bounded, measurable, and real valued, and is

uniformly positive in Rn . The real symmetric matrix (ajk(x)) is uniformly

positivein Rn and its components are in CX(R"). Moreover there exist positive

constants C and b such that

\a(x) - 1| + \ajk(x) - Sjk\ + \Vajk(x)\ < Ce'2b^     in R" .

(1.3) The function q(x) is real and in Lfoc(R"), where p = «/2 for « > 5 ,

p > 2 for « = 4 and p = 2 for « = 3. The real valued function o(x) is

in C2(dQ). Moreover there exist positive numbers C and b such that for

sufficiently large |x|   \q(x)\ < Ce-26^.

Let H^il) be a set {/ e H^Q.); pxd%f e L2(Q) for |a| < m} and

L2P](Q) = H^(Q). We denote by Ya a set {k e C;lmK > -a} if « is odd,
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and a set {k e C\0; \lma\ < a, -oo < arg k < oo}U{/c e C; 0 < arg k < n}

if « is even. Then in Theorem 4.6 of our previous paper [9] under the above

assumptions we show that for any positive a < b there exists R+(k) which is a

finitely meromorphic function in Ya with values in 3§(L2p(í~l), H2_¡(Cl)) such

that u(x) = R+(K)f is the solution of (1.1) if k is an analytic point of R+(k) ,

where p(x) = e~a^ .

The purpose of this paper is to study the behavior of R+(k) in a neighbor-

hood of k = 0 . It is well known that L is a self adjoint operator on 3? with the

domain D(L) = {/ € H2(Ci) ; Bu = 0 on <9Q}, where ¿F = {f(x) ; \\fWjg- =

(/, /c*-1)z.2(£i) < oo} (see Lemma 2.1 of [8]). We denote by HD(Q.) the com-

pletion of C0°°(n) (C0°°(Q)) by the Dirichlet norm ||V/||L2(£Î) if B is the

third (Dirichlet) boundary condition. Let H be //¿.(Q) x %? and A = (_°£ ¿)

be an operator with the domain {/ = '(f , f2) e H ; f2e L2(Q) n HD(Q),
d2fx e L2(Q) for \a\ = 2, Bf = 0 (on dQ.}.) Put En = {k; k2 is a nonpos-
itive eigenvalue of L} if « > 5 and put En = {k;k = ip, p > 0, ±/z is an

eigenvalue of A} if « = 3, 4. We note that En \ {0} = {k ; k2 is a negative

eigenvalue of L} (n = 3, A) and that from Lemma 2.1 of [8] the number of

elements of En is finite and the dimensions of each corresponding eigenspace

are finite. We shall prove the following:

Theorem 1.1. We have the following two statements:

(i) If « is odd and 0 £ En, then R+(k) is analytic at k = 0.
(ii) If « is even and 0 $ En , then there exists ö such that

oo

(1.4) R+(k)=  Y, RPq(Kn-2InKyK",

P,9=0

where k e {k e Ya; \k\ < ö, -n/2 < arg/c < 37i/2}, Rpq e â§(L2(i\),

H2,(Q)) and the double series is absolutely convergent in the uniform operator

norm.

Under the assumptions a(x) = 1 , q(x) = 0, and a = 0 the above theorem

is proved in Lemma 1 of [4] and Theorem 1.2 of [2]. In this case 0 ^ En is

automatically satisfied.
As an application of Theorem 1.1 we shall consider the local energy decay of

the solution of the following wave equation:

(d?u + Lu = 0     inRxii,
(1-5)        \ ,  ,

I Bu = 0     onRxdQ,  d,J~lu = fj   on t = 0 (j = 1, 2),

where we assume that all coefficients of L and B and <9Q are in the C°° class.

It is known that there exists a group of linear operators U(t) on H such that

A is the infinitesimal generator of U(t). (See Theorem 2.7 in [8].) We remark

that for any / = f(f , f2) e H the first component of U(t)f satisfies (1.5)

in the distribution sense. (See the proof of Lemma 3.2.) In order to show a

decay of the local energy E(f; Q.a) = \ ¡Qa{ajkdkfxdjfx + q\fx\2 + a~x\f2\2} +

3 /an ffl/i I2 dS > where nfl = On {|x| < a} " / = '(/,, f2) e H and o = 0 if B
is the Dirichlet condition, we suppose a nontrapping condition of (1.5), which

is stated in Definition 3.1. We note that if a(x) = 1 , Ojk(x) = Sjk , and the

complement set of Q, is convex or star-shaped, a nontrapping condition of (1.5)
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holds. Making use of Vainberg's argument in [6], we can show the following

local energy decay:

Theorem 1.2. We assume that a(x)-l, a¡k(x)-ojk, q(x) belongs to Có°°(r¿).

If the nontrapping condition of Definition 3.1 holds and 0 fi En, then for any

/effnr'tfla),

(1.6) E(U(t)(l-P)f;Cia)<a(t)\\f\\2H    for all t > 0,

where P is the projection to the eigenspace associated to negative eigenvalues

of L, and if n is odd, then a(t) = Cx eicp(-C2t)  with positive constants C¡

(j = 1, 2) and if « is even, then a(t) = C3(l + t)2(-x-"]   (C3 > 0). Moreover if
E„ = 0 and YjexA = {0}, then by putting E(f) = E(f; £1^) we see that for
feHn^'(iia)

(1.7) E(U(t)f;na)<a(t)E(f).

Under the assumption a(x) = I, q(x) = 0, and a = 0, (1.7) is proved in [A]

and Theorem 4.3 of [2].

2. The proof of Theorem 1.1

In the odd case Theorem 1.1 is proved in Theorem 4.6 of [9]. So in this

section we always assume that « is even and « > 4. First we shall con-

sider the fundamental solution Rq(k) of -A + /C2 defined by [/?o(rc)/](x) —

J F+(x-y)f(y)dy . Here by making use of the Hankel function H(p\z) of the

first kind with p = (n - 2)/2, F+(x) is defined by í(k/2ti\x\)pH{p1)(k\x\)/A .
The behavior of Rq(k) near k = 0 is as follows:

Lemma 2.1. There exists A(k) and B(k) which are analytic in {k e C ; \k\ <

a} with values in ¿$(L2p(R"), //2_,(Ä")), where a is an arbitrary positive num-

ber and p(x) — e~"\x\, such that

(2.1) R+(k) = A(k)k"-2 In k + B(k),

where [B(0)f](x) — cq J \x - y\2~"f(y) dy with some constant Co.

Proof. From [7] (see (5), p. 74; (1), p. 61; (2), p. 62) it follows that F+(x) =

^1(/c|jc|)/c"-2(lnK|x|/2 + 1) + \x\-pY?ñ2oCm(K\x\)2m + k"-2Bx(k\x\), where

Ax(z) and B\(z) are entire functions such that for any j \dJzAx(z)\ + \dJzBx(z)\

< Cje^ . Let A(x)f = JAx(k\x - y\)f(y)dy. Then by the argument of
proving Propositions 2.4 and 2.5 in [9] we see that A(k) is analytic in {k e

C; \k\ < a} with values in m(L2p(Rn), H2_t(R")). Similarly B2(x)f =

J B2(k\x - y\)f(y) dy, where

P-i

52(/c|x|) = /l1(K|x|)K'!-2(ln|x|/2+l)-f-|x|-p^c:m(K|x|)2m+/c"-251(K|x|),

m=\

has the same property. The remainder term (B^f)(x) = cq J |x - y\2~"f(y) dy

belongs to Hxp_,(R") for / e L2(Rn) and satisfies the relation -A(ß3/) =

c0Bif with some constant c'0. Thus by the argument of proving Proposition

2.4 of [9] it follows that B3 e3S(L2p(Rn), H2^(Rn)). The proof is completed.
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Next according to the argument in §3 of [9] we shall check the behavior

of the resolvent operator of -djajk(x)dk in R" . Let tpm(x) be a Co°(Rn)

function such that <pm(x) — 1 for \x\ < m, (pm(x) = 0 for |x| > m + 1,

0 < <Pm(x) < 1, and for any multi-index ß \di<pm(x)\ < Cß , where Cß does

not depend on m . Put A = dj(Sjk -aJk(x))(l -<pm(x))dk . Then A belongs to

3§(H2.,(Rn), L2p(R")) and if m is sufficiently large, then \\A\\ is sufficiently

small. Put Tx(k) = AR+(k) . Then for any g e L2p(Rn), -(djäjk(x)dk + k2) x

Ro(K)g = (1 + Tx(K))g, where äjk(x) = SJk(x) + (ajk(x) - ôjk)(I - (pm(x)).

From Lemma 2.1 it follows that R\(k) = Rq(k)(I + Tx(k))~x is denoted by

oo

F(Kn-2lnK,K)=  Y, Apq(Kn-2InK)pKq,

p,q=0

where Apq e ¿%(L2(R»), H2p_t(R»)) and £~9=0 MmIP'|k|« < °° if |A| and

|k| are sufficiently small.

We shall consider the following problem:

(2 2) Í (dJaMx)dl< + *°)Vx = dj(äJ!< * ajk)(x)dKApqg     in |x| < A,

' \vx(x) = 0    on |x| = A.

where ImAo 4 0, g e L2(R"), and A is sufficiently large. Put Vx(k) =

T,?,q=o Vm(k"-2Ink)Pk« , where Vpqg = vx(x). Then from Vpq e ¿%(L2p(R"),

H2({\x\ < A})) and \\Vpq\\ < C\\Apq\\, where C does not depend on p and q ,

we see that ¿^°?=o ll^lll^l^kl9 < °° if 1^1 and lKl are sufficiently small, and

that Vx e m(L2p(Rn), H2({\x\ > A})). Now from (2.2) it follows that

-(djajk(x)dk - k2)(R+(k) + <p2xVx(K))g = (I + T2(K))g,

where q>\(x) e Co°({|x| < A}) such that q>x(x) = 1 on supp(ajk - äjk) and

T2(k) = <p2(À0-K2)Vi(K)-[djajkdk, <p2]Vx(k) , where [A , B] = AB -BA . We

have the following:

Lemma 2.  I + T2(0) is an invertible operator in â$(L2(Rn), L2(Rn)).

Proof. Since T2(0) is a compact operator, we may show that Ker(7 + T2(0)) =

{0}. We suppose (I+T2(0))g = 0. Then -djajk(x)dk(R+(K) + tp2Vx(0))g = 0.

If we put «(x) = (/ + r,(0))-'g,then (1 + \x\)Nh(x) e L2(R") for any A and
R+(0)g = R+(0)h. From Lemma 2.1, R+(0)h(x) = c0 j \x - y\2~nh(y)dy . By

|x|2-" eLx({\x\ < 1}) it follows that \ JD¡ \x-y\2~"h(y)dy\ < (H-|jc|)-^Ai(jc) ,

where Dx = {vilx-^l < 1} and «i(x) e L2(R"). On the other hand

\IDl\x-y\2~nh(y)dy\2 < C ¡Di \x-y\2E~n(l + \y\-2N dy, where e is sufficiently

small and D2 = {y; \x - y\ > 1} . From the well-known inequality (see (2.2)

in [9]) we see that |A+(0)«(x)| < C(l + |x|)£-"/2 + (1 + |x|)-"«.(x). Similarly

VRq (0)«(x) is dominated by a function of the same type. So we can use the

argument in the proof of Proposition 3.1 in [9] and can show that g - 0. The

proof is completed.

We put R+(k) = (Rf(K) + <p]Vx(K))(I + T2(k))~x . Then R+(k) is the re-

solvent operator of -dja¡k(x)dK - k2 and is denoted by Fx(k"~2Ink, k) =

¿Z7.q=oBP¿K"-2InKf K",    where    BM     e    ¿®(L2p(R"),    H2^(R"))    and
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£^?=0||#M|||AHrc|<? < oo if |A| and \k\ are sufficiently small. We shall con-

sider the following problem:

Í2 3) { (djUJkdk ~ ^Vl = ^dJaJkdk -M)(l - W)BpqEg     in fi, ,

( " ' \ Bv2 = 0    ondiï, v2 = 0on\x\ = Nx,

where ImAi 4 0,  g e L2p(Q), Eg — g in Q and Eg = 0 in Qc, Qx =

fin {|x| < A,} and ip(x) e C°°(Rn) such that y/(x) = 1 if |x| > N¡ - 1

and \p(x) = 0 near dii. Put V2(k) = E^?=o Wpq(Kn-2 In kYk" + y/R+(ic)E,

where Wpq e &(L2p(Q.), H2(D.¡)) is defined by Wpqg = v2. We note that

X^%=o H^pillWM9 < oo if |A| and |k| are sufficiently small. From (2.3) we

see that -(djajkdk - q + a~xK2){R+(K)Eg - ç>2(R+(k)E - V2(tc))g} =

(I + T3(K))g, where <p2 e Cq°({x; |x| < Nx}) such that (p2(x) = 1 near Qc

and T3(k) e 3§(L2p(Çï), L2(Q)) is defined by

{(a-x-l)K2-q}R+Eg+{[dJajkdk,(p2] + (p2(a-xK2-kx-q)}(R2'(K)E-V2(K))g.

Lemma 2.3. If 0 $ E„ , then I + T3(0) is invertible.

Proof. From Proposition 4.2 in [9], r3(0) is a compact operator. So we may

prove Ker(7 + T3(0)) = {0} . We shall show that if (/ + T3(0))g = 0, then

.R+tO)^ - tp2(R^(0)E - V2(0))g belongs to L2(iï), if « > 6, and it belongs
to Hd(ÇI) , if « — A. From the definition R^(0)Eg - R^(0)h has a compact

support, where h = (I+Ti(0))~x(I+ T2(0))-xEg and (1 + \x\)Nh(x) e L2(Rn)

for all A. Since \x\2~n eL2({x; \x\ > 1}) n Lx({x ; |x| < 1}) if « > 6, we

see that R^^Eg belongs to L2(Rn), if « > 6. By similar argument and one

of Lemma 2.2, VR+(0)Eg e L2(Rn) and \R+(0)Eg(x)\ < C(l + \x\y-n'2 +

(1 + \x\)~Nh2(x), where h2(x) e L2(Rn). So by the argument in the proof of

Proposition 4.4 in [9] when k = 0 and « = 3 R^(0)Eg-g>2(R+(0)E-V2(0))g e
HD if « = 4. It follows that if 0 $ E„ , then R+(0)Eg-<p2(R+(0)E-V2(0))g =
0. The argument of deriving g = 0 from this condition is similar to one of

the proof of Proposition 4.4 in [9]. The proof is completed.

Finally we put

R+(K) = {RÎ(K)E - ç>2(RÎ(k) - V2(k))}(I + T3(K))-Xa-X ,

where (a~xf)(x) = a~x(x)f(x). Then R+(k) has all the properties stated in

Theorem 1.1.

3. The local energy decay

In this section we shall show the local energy decay of solutions to (1.5).

Here we assume that all coefficients of L and B and d Q are in the C°° class,

and the supports of a(x) - 1, ajk(x) - o¡k , q(x) are compact. First, we state

the definition of a nontrapping condition. The generalized bicharacteristics of

problem (1.5) are defined in Definition 3.1 in [3]. The projection into Q of

generalized bicharacteristics is called generalized geodesies. We note that these

geodesies are parameterized by time t.

Definition 3.1. Problem (1.5) is said to be nontrapping if for any sufficiently

large a there exists Ta such that there are no generalized geodesies y(t) which

satisfy the condition {y(t) e Q. ; t e [0, Ta]} c {x ; |x| < a} .
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It is known that if a(x) = 1, ajk(x) = ôJk , and fic is convex or star-

shaped, then problem (1.5) is nontrapping. In this section we always assume

this nontrapping condition.

Lemma 3.2. Assume that the support of f e Ho is contained in fia = Q n {x ;

|x| < a}. If a is sufficiently large, then [U(t)f](x) e C°°(Da), where Da =

{(t,x)eRxU; t>Ta, \x\<t-Ta + a}.

Proof. Let u(t, x) be the first component of [U(t)f](x). Since D(A) is a

dense set in H, we see that d2u + Lu — 0 as 2¡'(R x Q). From this fact,

Theorem 4.3.1, and Theorem 2.5.6 of [1] it follows that the trace of Bu on

R x dCl exists as an element of 3¡'(R x 80.). From Bu - 0 on R x dd

for / e D(A) by approximating elements of D(A) to u, we see that Bu — 0

on R x öQ. Thus we can use theorems on a propagation of singularities for

u(t, x). From the finite propagation property and the fact that D(A) is a dense

subset of H, u(t,x) = 0 in {(t, x) ; \x\ > \t\ + a}. Let y(t) be a generalized

geodesic such that \y(to)\ < to - Ta + a and to > Ta . Then from L — -A in

{x ; |x| > a} and the nontrapping condition it follows that |y(0)| > a . Thus

u(t,x) is C°° near {(t,y(t)); \t\ < ô}, where ô is sufficiently small. By
theorems on a propagation of singularities (see for example Theorem 5.10 in

[3]) it follows that u(t, x) is C°° near (t0, y(t0)). We note that the condition

(2.2)± in [3] is valid for the third boundary condition. The proof is completed.

Next we shall state the behavior of R+(k) near | Re;c| — oo.

Theorem 3.3. Assume that problem (1.5) is nontrapping. Then there exist positive

constants a and ß such that R+(k) is analytic in i/QiJg = {k; -n/2 < arg/c <

37t/2, |Imrc| < aln|Re/c| - ß} with values in ^(L2(Q), H2(iïa)), where

L2(fi) = L2(Q) n g"(Qa) with fia = fin {|x| < a}. Moreover there exist

positive constants C and T such that for j = 0,l,2,KeUaß,

(3.1) \\R+(K)f\\H^(Çla) < CM'-^l'^lll/ll^,.

The statement of the above theorem is the same as Theorem 7 in [6]. How-

ever, in order to prove it the author of [6] assumes an existence of the Green

function of problem (1.5) which is defined in condition D' in [6, p. 11]. Since

there is no guarantee on the existence of it, we shall give a proof without as-

suming the existence of the Green function. But the outline is almost the same

as the proof of Theorem 7 in [6].

The following is a sketch of the proof of Theorem 3.3 without assuming the

existence of the Green function. Let h(t, x) be a C°°(Rn+x) function such

that h(t, x) depends only on ? in a neighborhood of <9fi, h(t, x) = 1 in the

complement set of {(t, x) ; t > Ta + l, \x\ < t-(Ta + l)+a} and h(t, x) = 0 in

{(t,x); t>Ta + 2, \x\ < t-(Ta + 2) + a}. Put (E(p)(t,x) = h(t, x)u(t, x),

where u(t, x) is the first component of U(t)'(0, <p) and define (E(K)q>) =

Jo°° e'K'(E(p)(x, t)dt. Then we have the following:

Lemma 3.4. The operator E(k) is an entire function of k with values in

¿$(Hsa(Ci), Hs+2(Qa)) (s = 0, 1) and there exist positive constants C and

T such that for 5 = 0,1 and j = 0, 1, 2,

(3.2) \\E(KMHs+2-Haa) < C|K,!-V!tal%||tf(Ql).
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Proof. By Lemma 3.2 and the closed graph theorem the mapping from L2(Q)

to u(t,x) 6 C°°(D), where D = {(t, x) e R xQ.: t > Ta, \x\ < t - Ta + a},
is continuous. So for any j, ß , and Dx t§ D there exists a constant C =

C(j,ß,Dx) so that

(3.3) sup|(ö/f9/«)(i,x)|<C||^||L2(£ia).

By dt(E(p)(0, x) — q> and integration by parts it follows that

~ /»OO

(3.4) (L-K2)E(p = -(p+ I    f(t,x)eiKtdt,
Jo

where / = [d2 + L, h]u belongs to C°°(R x Q) from (3.3). Making use of

the properties of U(t), the continuous inclusion HX(Q.) c Hx(£la), and the

elliptic estimate for L(u(t, •)) = -(d2u)(t, x), we can prove that djE/dtj e

C(R;^(Hsa(Q), Hs+x-J(Q,a))), where s = 0, 1 and 0 < j < s + 1 . Now

the estimate (3.2) is derived from the above property of E, (3.3), the elliptic

estimate for (3.4), and E<p = ík~x J0°° e'Ktdt(E(p) dt. The proof of Lemma 3.4

is completed.

From Lemma 3.2 we can extend u(t, x) near D2 = [Ta + 1, Ta + 2] x {x e

Rn: \x\ < a} to be an element of C°°(D2). Here we may assume that the

extended function ü(t, x) also satisfies (3.3) for any compact subset D{ of

{(/, x) e R x Q) : t > Ta , \x\ < t - Ta + a} U D2. Let us consider the solution

of the wave equation (d2 - A)w = -f in R" , d/w = 0 on t = 0 (j — 0, 1),

where f = [d2 + L, h]ü e C™(Rn+x). Put V(k)<p = J0°°eiK'w(t, x)dt.

Then we have the following:

Lemma 3.5. V(k) is an analytic function of K in D — {k e C\ {0} : = n/2 <

arg/c < 37T/2} with values in â§(L2a(Rn), Hs({x: |x|, a})), where L2a(Rn) =

L2(.R")ná?'({|x| < a}) and s is arbitrary integer. Moreover there exist constants

Cs and T so that for any k e D there exist constants Cs and T so that for

any k e D

(3.5) W(K)f>y,m<a}) < QiKi-^^M^^.
Proof Let \p(x) e C0C(R") such that y/(x) = 0 if |x| < ax (ax > a), ip(x) =

1 if |x| > Ax , and L = -A in supp ip. Put v(t, x) = i//E(p+w . Then v satis-

fies the Cauchy problem (d2-A)v = y/f-f-[ip, A]E<p in [0, oo)xRn , d/v = 0

on t — 0, (j — 0, 1). Here the support of ipf-f- [ip , A]Eq> is contained in

{(t, x):\x\< Mq, 0 < t < T0} for some Mq and Tq . From the finite progaga-

tion property of v it follows that (d2 - A)v ~ 0 in [T0, oo) x R" , d/v = <p¡ on

t = To (.7 = 0,1), where the supports of <Pj are contained in {|x| < M} . Mak-

ing use of the inequality supte[0 T]\\d¡w(t, -)\\h^r-) < CTj,s\\<P\\LHa) which is

derived from (3.3) and a strictly hyperbolic estimate for w , and the continuous

inclusion H¡(Q) C Hl(Qa), we see that H^H^^») < C||ç»||L2(n) (j = 0,1).

If « is odd, by the existence of a lacuna for v , w(t, x) = 0 for t > 7". and

\x\ < a . If « is even, v - d(Ex(t) * (po)/dt + Ex(t) * rpx , where,

Ex(i)*ñ(2nrp(jí)       í     <Pdx-y)/(t2-\y\2y/2dy
\tdtj J,y,<,
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with p = n/2 . If t > Tx = a + M and |x| < a, then

/     <px(x-y)/(t2-\y\2)x/2dy= j       <Px(y)l(t2 - \x -y\2)x'2dy.
J\y\<t J\y\<M

It follows that for Re t > Tx , \x\ < a , w(t,x) is infinitely differentiable jointly

with respect to t, x is analytic in / and satisfies sup\d/dxw\<Cjyat~3\\<p\\L2(çi),

where the supremum is taken in \x\ < a. Thus by the argument in the proof

of Lemma 6 of [6] we have the desired properties on V(k) . The proof is

completed.

Let Wx(x) e C°°(R") such that y/x(x) = 1 for |x| > a and <Px(x) = 0 near

¿3Q, and put W(k)<p = É(tc)<p + \px V(k)<p . Then (L - K2)W<p = -(I + T(jc))<p

and BW(K)(p = 0, where T(k)<p = -(L + A)V<p - (L - K2)(\px - l)V(p e

L2(iï). From (3.2) and (3.5) there exist positive constants a, ß such that

\\T(K)U(Ll(ahLlm < 1/2 for k e Uatß. Put R(k) = -W(k)(I + T(k))~x ,
which satisfies (3.1). The final problem to complete the proof of Theorem 3.3

is to show the equality R+(k)<p = R(k)<p for <p e L2(Q). In order to prove this

we may show the following:

Lemma 3.6. There exists a positive constant A such that for any <p e L2(Çl) and

k with ImK>^, R(K)<p e H2(Q).

Proof. Let y/x(x) be the function that appeared in the definition of W(k) and

put Vx(t, x) = ipx(E(p + w), which satisfies (<92 + L)vx = F(t, x), where F =

ipx(d2 + L)(E(p + w) + \px(&- L)w . From the properties of U(t) and a strictly

hyperbolic estimate for w that appeared in the proof of Lemma 3.5 it follows

that for all r > 0   ||F(r, OIIl^j?») < C9 . By the proof of Theorem 3.8 in [8],

u(t, x) = [U(t)<p]x(x) = Z7=x k-\cp,Pj)Aek't-e-k',)pJ/2 + L-xl2sintL^2cpx ,

where {-A2} are negative eigenvalues of L, {pj} are linearly independent

eigenvectors of {-X2}, L+ = J0°° XdE(X) with the spectral resolution {E(X)}

of L, and q>x = (p - Xwlii^j Pj)jrPj ■ Thus we have vx e C(R; HX(R")) and

dtvx e C(R; L2(R")). Making use of an estimate for hyperbolic operator on

vx, we see that there exist A > 0 and y > 0 so that e~'A\\vx(t, -)\\h¡(r«) <

C{\\yx<p\\mR«) + fo,^\\F(s, Olli.',*.)*}. Thus R(k)ç> e Hx(Çl) if lmK>A.

Since R(k) e //loc(fi), from the Fourier transform and (A-k2)R(k)cp e L2(Q)

it follows that R(k)(P e H2(Q) . The proof is completed.

Proof of Theorem 1.2. We use the argument in the proof of Theorem 8 in [6].

The solution  u(t,x)  of (1.5) is equal to  ff^_™R+(K)(pe~1KtdK/2%, where

(/i > h) = (0) <P) with <p e D(L) n L2(i~l) and y is sufficiently large. We note

that the integral converges from the equality R+(tc)<p — k~2(R+(k)L<p - <p).

By the unique continuation property of solutions to (L - k2)u — 0, where

k e R, and Theorem 4.7(a) in [9] it follows that any point in R \ {0} is

an analytic point of R+(k) . By deforming the contour of the integration, we

see that u(t, x) = iY!J=x Res[R+(K)tpe-Kl ; iX¡] - JrR+(K)<pe-'Kl die , where

/ is sufficiently large and Y is the curve shown in Figures 1 or 2 in [6].

From R+(k) = (L - k2)~x for 0 < arg«: < n it is not difficult to show that

iRes[R+(K)tpe~'K' ; ikj] = el>1 Y,ii<P > PUfrPiß^j, where {p¡} is a base of the
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eigenvector space of the negative eigenvalues -A2 of L. From Theorems 1.1,

3.3, and Theorem 8 and Lemma 9 of [6] we have (1.6) for / = (0, q>) with

<p e D(L) n Z-a(Q). We note that the solution u(t, x) of (1.5) is equal to the

first component of dtU(t)!(0, fi) + U(t)'(0, f2). Moreover if En = 0 and

Ker^4 = {0} , then we can show that \\f\\2H is equivalent to E(f). We com-

plete the proof of Theorem 1.2.
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