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Abstract. We consider a bifurcation problem for a general class of fully non-

linear, second-order elliptic equations on a regular bounded domain in K" and

subject to homogeneous Dirichlet boundary data. We assume that the linearized

problem about the trivial solution possesses a positive solution for at least one

isolated parameter value. With no other growth or sign conditions imposed

upon the nonlinearity, we establish the existence of a global branch of nontriv-

ial positive solutions. Moreover, if there is only one such isolated value of the

parameter, we deduce that the branch of positive solutions is unbounded.

1.  INTRODUCTION

The model equation,

Au + kf(u) = 0   infiel", >lel,

(1.1) w = 0   ondQ,

u>0   in«,

has been studied by many authors; we refer to the reviews [1,9] and the mono-

graph [12] where many additional references can be found. Besides growth

conditions on / near infinity, an essential assumption in most contributions is

that the function / is nonnegative on R+ . References [7, 10] are exceptional

in this respect in that no sign condition is imposed upon the nonlinearity. Their

methods, however, do not allow for the dependence of / on the gradient of

u ; by adding (and subtracting) some kcu > 0, they make / nonnegative in

order to apply a minimum principle and a Hopf boundary lemma. The results

in [10] appear to be the most general, applying to quasi-linear equations. (We

do not deny that in many papers the goal is beyond mere existence of posi-

tive branches; the number of positive solutions and the qualitative analysis of

bifurcation diagrams are of special interest.)

Here we present a result for a class of nonlinear, elliptic problems over a
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regular domain of the form

F(V2u,Vu,u,x,k) = 0   inficK",  keR,

(1.2) u = 0   ondfi,

u > 0   on Q.

Assuming F(0, 0, 0, x, k) = 0, we have the trivial solution (k, u) = (k, 0)

for all k e R, and we assume that the linearized problem has a positive "eigen-

function" spanning a one-dimensional kernel for some isolated value of the

parameter k = ko . For a large class of problems, such a positive eigenfunction

is guaranteed by the Krein-Rutman Theorem. We emphasize that, due to the

generalization in [7], the zero-order coefficient 7^(0, 0, 0, x, k) need not be

definite in order to obtain a positive eigenfunction. The existence of global bi-

furcating branches of solutions of fully nonlinear elliptic problems was recently

established in [3]. The basic idea is first to differentiate the equation, thus

yielding a higher-order quasilinear problem, for which recent generalizations of

Rabinowitz's classical theorem [10] are applicable, cf. [3, 8]. In §2 we summa-

rize the relevant steps leading to the existence of a global branch (continuum) of

solutions of ( 1.2)i, 2. Our main contribution is presented in §3; with no growth

or sign conditions imposed upon F, we show that all solutions contained in

the branch constructed in §2 are positive (satisfy (1.2)3 )• The basic tool here is

a minimum principle, as given in [4, 11], for linear equations. If ko happens

to be the only parameter value for which the linearized problem admits a pos-

itive eigenfunction, we immediately conclude that our positive global solution

branch is unbounded in some appropriate norm.

2. Global bifurcation

Let Q. c R" be any bounded domain with a boundary diï of class C2+a ,

0 < a < 1. We study the parameter-dependent boundary value problem,

F(V2u, Vu, u, x,k) = 0   inft,

u = 0   ondii,

where F is a C3-function of its arguments, Vu denotes the gradient with com-

ponents ux¡, and V2u denotes the second gradient or Hessian with components

ux,x , i,j=l,---,n. (Here and in the sequel we use summation convention,

and ux¡ = du/dXj, uXjXj = d2u/dxjdxj.) For F we assume uniform ellipticity:

«|£|2 < 7^,,(W, y,_u, x, k)C¿j < ß\C\2 for all (W, v, u, x, k)

(2.2) e R^rn" xR"xRxQxR, ¿jeR". The positive constants a, ß

axe uniform on bounded subsets of R"^ xl'xlxQxl.

Assuming F(0, 0, 0, x, k) = 0 for all (x, k) e Í2 x R, we have the trivial
solution (k, u) = (k, 0) for all 2éM. For bifurcation from this trivial branch,

we study the linearization

(2 3)      FWij(0, 0, 0, x, k)ux¡x¡ + FV,(Q, 0, 0, x, k)ux, +FU(0, 0, 0, x, k)u
= 0 in ÍÍ, together with the boundary condition m = 0 on dQ.

By (2.2) this is a linear elliptic boundary value problem. A necessary condition

for bifurcation at some (ko, 0) is that (2.3) have a nontrivial solution for Ao €

R. If the parameter k occurs only linearly in the zero-order term, then (2.3) is
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an eigenvalue problem in the classical sense. It is not the goal of this work to

study the linear problem (2.3) in its generality, but we simply assume that,

for some ko e R, the linear operator defined by the left

(2 a) side of (2.3) has a one-dimensional kernel spanned by a

function «o that is positive in Q, and a closed range of

codimension one.

For a large class of problems, the Krein-Rutman Theorem guarantees the exis-

tence of «o (e.g. see [12]). For a generalization of the classical results, we refer

to [7].
The functional analytic setting of (2.1) is described as follows: For k e

N U {0} , let

{"} SI C*+a(Q) be the usual Holder spaces with norm || ||jt+a>  E =

[ • ' C°(ÏÏ), D = C2+°(ÏÏ)n{u\dQ = 0}.

Then the left-side of (2.1) defines a mapping

(2 ¿\ G: R x D —> E, which is twice continuously Fréchet differen-

tiable.

The first-order derivative Gu(k, u): D —> E is of the form

(2.7) Gu(k, u)h = FWij(V2u,Vu,x, k)hx,X)+FVi(V2u, Vu,u,x, k)hx,

+Fu(V2u, Vu,x,k)h    for (k, u) eRxD, he D,

By virtue of (2.2), Gu(k, u) is a uniformly elliptic operator for each (k, u) e

R x D. The Schauder estimate then implies that Gu(k, u) is semi-Fredholm.

By assumption (2.4), Gu(ko, 0) is Fredholm of index zero. Thus, Gu(k, u)

has index zero, by the stability of the Fredholm index. Furthermore, it is well

known that the operator Gu(k, u) is sectorial and that its spectrum consists of

isolated eigenvalues of finite (algebraic) multiplicity. (For more details and a

reference, see [5] and [6].) Therefore, by (2.4),

zero is an isolated eigenvalue of finite (algebraic) multiplicity of

(2.8) the Fredholm operator Gu(ko, 0): D —► E, where Gu(ko, 0) is
given by the left side of (2.3).

Therefore, the crossing number x(^-o) through 0 at k = ko is defined for the

family Gu(k, 0) (see [8]), and we assume that

(2.9) x(M is odd.

(x(ko) is the number of eigenvalues (counting multiplicities) in the 0-group of

the eigenvalue perturbation of Gu (k, 0) that leave the left complex halfplane

through 0 when the parameter k passes through ko .)

We emphasize that if the Krein-Rutman Theorem is applicable (including

the generalization given in [7]), then the zero eigenvalue of Gu(ko, 0) is simple,

and therefore x(^-o) = ±1 . In the case of "simplicity in the sense of Crandall-

Rabinowitz" [2], their nondegeneracy condition is equivalent to an odd crossing

number (see [8]). We do not pursue the problem of odd crossing numbers for

Gu(k, 0) near k = ko in its generality. In particular cases, e.g., [6], x(ko) can

be computed explicitly.
As shown in [8], an odd crossing number implies local bifurcation. Therefore,

,_ . „,        the component Xo C R x D in the closure of the set of nontrivial

^ '    '       solutions of G(k, u) = 0 that contains (ko, 0) is not empty.
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We call the component Xo global, which we now describe in more detail. Since

F is fully nonlinear, it does not necessarily define a proper map G (2.6). There-

fore we do not know if Xo is subject to the Rabinowitz alternative in R x D

(see [10] or [8]). There is a way, however, to give a weaker alternative for Xn.

Following [3], we convert equations (2.1) into a quasi-linear elliptic boundary

value problem of fourth order that has precisely the same solution set as (2.1).

As shown in [10] or [8], quasi-linear elliptic operators are proper (and admis-

sible in the sense of [8]; see [6]), and therefore global bifurcating continua are

subject to the Rabinowitz alternative, which, in our particular case, reads as

follows:

Let F be a C5 -function of its arguments. Then Xo , emanating

(2.11)        at (ko, 0), is unbounded in R x C4+Q (U) or it meets the trivial

solution set at some different (kx, 0).

Remark. There is a price to pay for the above conclusion and also for the more

general results of [3], which is not explicitly discussed in that work; namely,

the alternative (2.11) does not exclude that Xo D (R x {0}) = (ko, 0) and X0

is bounded in R x D. If (1.2) is quasi-linear, however, then the C4+a(Q)-

topology in (2.11) can be replaced by the C1+a(Q)-norm. Indeed, there is no

need to differentiate (1.2) in this case, and we obtain (2.11) directly in terms

of the C2+Q(Q)-topology. Then by the Schauder estimate, boundedness in the

R x C1+i,-norm implies boundedness in the R x C2+<*-norm; also see [6].

3.  POSITIVITY OF THE GLOBAL CONTINUUM

Let

P+ = {u e D,   u > 0 on ii,  du/ds > 0 on diï}, which is a
(3.1) positive cone in D ; here s denotes any direction that enters Q

transversally.

Obviously, 7+ is open in D, and we claim that

(3.2) Xon(Rx7J+)^0.

Indeed, uq e P+ by Lemma 77 of [4]. By the Lyapunov-Schmidt reduction,

any solution of G(k, u) = 0 near (ko, 0) is of the form

(3.3) u = euo + o(e)   ase—>0,

where (k,e) satisfies a scalar bifurcation equation

(3.4) <P(A, e) = 0,   for which <Pe(A, 0) changes sign at X = Xq (see [8]).

(As a matter of fact, the change of sign of <Pe(A ,0) at k = ko is equivalent to

an odd crossing number x(ko) of the family Gu(k, 0) at k — ko.) The Inter-

mediate Value Theorem guarantees a (local) continuum {(k, e)} near (An, 0)

with e > 0 (and e < 0), and hence (3.2) follows from (3.3) and the assumption

(2.4) on uq .
Assume that Xo leaves Rx P+ . By the connectedness of Xo , there must be

a solution (k*, u*) e Xo belonging to the boundary of R x P+ : that is,

(■•j c\ u* > 0 on Q, and there is at least one point xo€fi such that
1   '   ' U*(Xq) = VU*(Xq) = 0.
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L*u =

(3.6)

/ FWiJ(tV2u*, tVu* ,tu*,x,k*)dt
Jo

/ FVi(tV2u*, tVu*, tu* ,x,k*)dt
Jo

j Fu(tV2u*, tVu* ,tu*,x,k*)dt
Jo

XiXj

Ux,

u-0.

As first observed by Serrin [11], the usual minimum principle for elliptic

equations also holds without restricting the sign of the coefficient of the zero-

order term, provided that u* > 0 (cf. also [4]). We employ this result, including

the Hopf boundary lemma ([4, Lemma H]), to conclude:

(3.7) Condition (3.5) implies u* = 0 .

In other words,

(3.8) if (k* ,u*)el0 is on the boundary of R x P+ then u* =0.

The same arguments employed above (maximum principle) imply the exis-

tence of a global negative part of Xo that cannot leave R x P_ unless u* =

0(7>_ = -P+). We summarize:

Theorem 3.1. Assume the hypotheses o/§2. Then the global continuum Xo bi-

furcating at (ko, 0) consists of a positive part in P+ and a negative part in P- ,

each subject to the alternative (2.11).

Remark. Since we have not assumed oddness of G(k, •), we do not exclude the

possibility that the two parts behave differently.

Finally we note that

Corollary 3.1. Assume the hypotheses o/§2. If ko e R is the only parameter

value for which (2.3) admits a positive eigenfunction, then Xo is unbounded in
R x C4+a(ñ).
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