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Abstract. Consider the differential equation of a nonlinear oscillator with lin-

ear friction and a ^-periodic external force. We find optimal bounds on the

derivative of the restoring force in order to obtain a unique 7"-periodic solution

that is asymptotically stable.

Consider the differential equation

(*) x" + ex'+ g(x) = p(t),

where c > 0 is a fixed constant, p is  7-periodic,  g and p axe sufficiently

smooth and satisfy

0 < g'(x) < b   for each x e R (b > 0)

and

(H) g(-oo) < (1/7) /  p(t)dt < g(+œ).
Jo

Under these assumptions, (*) is a dissipative system (see [9, p. 51], [11, p. 71])

and, in particular, it has at least one 7-periodic solution. When b is small this

periodic solution is unique and globally asymptotically stable; however, when b

becomes large, one can expect that for certain forcing terms p(t) the attractor

set will have a more complex structure so that unstable 7-periodic solutions as

well as subharmonic solutions can appear. In this paper we obtain the optimal

condition on  b  in order to guarantee the existence of a unique   7-periodic

solution that is (locally) asymptotically stable when (H) holds.

Lazer and McKenna have already considered this problem in [3] when (H)

is replaced by the condition

a < g'(x) < b   for each x e R (0 < a < b).

They obtained sufficient conditions on a and b for the existence of a unique

7-periodic solution that is asymptotically stable.

The problem that we have posed can be reduced to the linear question: to

find the optimal b > 0 such that there exist no skew-periodic solutions in the

class of linear equations

(**) y" + cy' + a(t)y = 0        (0 < a(t) < b ,  t e K).
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For Hill's equation (c = 0) the analogous question is solved by comparison with

the constant case (a — constant) and, in fact, b = (n/T)2 (see [1] or [5, p. 68]).

For c > 0 (**) has not skew-periodic solutions for any constant a, and we shall

find that the role of model equation is now played by a certain equation with

piecewise constant coefficients. This equation was already studied by Meissner

in 1919 when c — 0 (see [5, p. 115]). The relevance of this equation will

come up from the use of the Maximal Principle of Potryangin. Following some

ideas from [2] the skew-periodic problem for (**) is formulated as a problem

in control theory and the optimal controllers are switching functions.

1. Main theorems

In this section we consider the equation

(1.1) x" + ex'+ g(t, x) =p(t),

where g 6 C(R/7Z xR), p e C(R/7Z). This equation is more general than

(*), and it will be assumed that the partial derivative dxg(t, x) is defined and

continuous and satisfies

(1.2) 0<dxg(t,x) <b   for each (t, x) e R x R.

Also,

(1.3) /   g(t,-oo)dt<       p(t)dt<       g(t,+oo)dt.
Jo Jo Jo

Our first result gives a sharp estimate on b (independent of the size of the

period 7) in order to guarantee that (1.1) has a unique 7-periodic solution

that is asymptotically stable. First we consider the equation in R,

(1.4) Cln[(l + C2)/4] = 2arccos[-(l + C2)-'/2],        CeR.

(Here, arceos: [-1, 1] —► [0, n].) It is easy to prove that (1.4) has a unique

positive root, denoted by Co• A computation shows that Co = 3.34354....

Theorem I. Assume that (1.2), (1.3) hold and

(1.5) ¿<(l + CoV/4.

Then (1.1) has a unique T-periodic solution that is asymptotically stable.

Remark. Assume that g = g(x) does not depend on t. Then ( 1.1 ) is dissipative

and the results in [10] together with some computations in [8] imply that this

periodic solution is globally attracting if b < c2/4. We do not know if this is

also true when only (1.5) is assumed.
As already mentioned, (1.5) is sharp. The next result will show that when it

does not hold, there exist certain periods for which instability or nonuniqueness

may occur. We now define a plane curve that plays an important role in the

determination of the critical periods. For each b > c2/4 let C¿ be the set of

points (x, y) e R+ x R+ satisfying Jb(x, y) = 0. Here,

(1.6) Jb(x, y) = 2cos<5xch(cy/2) + ysin<5xsh(cy/2) + 2ch[c(x + y)/2],

with ô = [b - (c2/4)]1'2,  y = (c/2S) - (2S/c).

It will be proved that C¿, is nonempty as soon as (1.5) does not hold (see

Lemma 3.2 below). Typically C¿ has a finite number of branches as described in

Figure 1.
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u
Figure 1

Associated with this curve we define

x(b) = min{x + y\(x, y) e Cb}.

Remark that the effective computation of x(b) reduces to an optimization prob-

lem for two variables with one constraint. Also, x is strictly decreasing as a

function of b.

In the next result we shall need the additional assumption

g is independent of t and inf{#'(x) ; x e R} = 0,

sup{g'(x); x G R} = b.
:i.7)

Theorem II. Assume that (1.2), (1.3) hold and b > (1 + Co)c2/4. Then

(i) If T < x(b) the conclusion of Theorem I is still true.

(ii) If T > x(b) and (1.7) hold there exists some p e C(R/7Z) satisfying
(1.3) and such that (1.1) has an unstable T-periodic solution and at least one

second order subharmonic solution.

Remarks. 1. In the assumptions of Theorem I or Theorem II(i) it will follow

from the proofs that (1.1) has no subharmonic solutions of period 27.

2. If 7 < x(b) + ô , with ö given by (1.6), it can be proved that (1.1) has
still a unique 7-periodic solution (see Lemma 5.2).

2.  A SKEW PERIODIC PROBLEM

Consider the linear equation

(2.1) y" + cy'+ a(t)y = 0,        a e L°°(R/7Z).

We are interested in skew-periodic solutions. A nontrivial solution of (2.1 ) is

called skew-periodic (or antiperiodic) if it satisfies y(t + 7) = -y(t) for each

t e R. Since the equation is linear, every second order subharmonic solution

must be skew-periodic.

Associated with (2.1) is the system

0        1
-a(t)    -c.

Let X(t) denote the matrix solution of (2.2) satisfying X(0) = I. The discrim-

inant of (2.1), denoted by A[q] , is defined as the trace of X(T). It follows

from Floquet theory that the existence of skew-periodic solutions of (2.1) is

equivalent to

(2.3) A[a] = -[l+exp(-cT)].

Later we shall use the following continuity property of A.

(2.2) x' = A(t)x,        A(t)
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Lemma 2.1. Let {an} be a bounded sequence in L°°(R/7Z) converging to ae

7°°(R/7Z) in the weak* sense. Then limA[a„] = A[a].

Proof. Let X„(t) be the matrix solution of (2.2) for an with X„(t) = I +

jQAn(s)X„(s)ds, t e R. It follows from the Gronwall lemma that {Xn(t)}

is uniformly bounded and equicontinuous on [0, 7]. For each subsequence

Xk -» X uniformly in [0,7], AkXk -» AX in L°°-weak*. Then X is the
solution matrix of (2.2) with X(0) = I. The uniqueness of the matrix and

the Ascoli theorem imply that X„ —► X uniformly in [0, 7]. In particular,

traced(7) -» traceX(7).

3. Meissner's equation

Given o e (0, 7) define the periodic switching function

[Vf'0!:= ('•
to,

and for each b > 0, consider the equation

(3.1) y" + cy'+ bsa(t)y = 0.

This equation can be explicitly integrated. For b <c2/4 it is always asymptot-

ically stable while for b > c2/4 the discriminant is

A[bsa] = exp(-c7/2)[2cosr5(Tch(c(7- tr)/2) + ysin¿ash(c(7 - a)/2)]

with ô and y given by (1.6).
The definition of Cb together with (2.3) implies that (3.1) has skew-periodic

solutions if and only if (a, 7 - a) e Cb . This remark leads to the following

result.

Proposition 3.1. (i) 7/(1.5) holds or T < x(b), then (3.1) has no skew-periodic

solutions, (ii) If (1.5) does not hold and 7 > x(b), there exists o e (0, 7)

such that (3.1) has skew-periodic solutions. Moreover, if T > x(b), there exists

ö e (0, 7) such that (3.1) is inversely unstable.

Remark. (2.1) is inversely unstable if the Floquet multipliers satisfy px < -1 <

p2 < 0 or, equivalently, A[a] < -(1 + exp(-cT)).

The proof is reduced to the obtention of the following properties of Jb .

Lemma 3.2.   (i)   Jb(x, y) > 0  V(x, y) e R+ x R+ «• b < (1 + Q)c2/4.
Let (xq , vo) € R+ x R+ be such that Jb(x0, y0) = 0 ; then

(ii) Jb(x0, y) < 0 for each y > y0,

(iii) Vr > x0 + yo3(x, ,yt), xt+yt = t, Jb(x,, y,) = 0.

Proof, (i) Jb = 0 can be solved with respect to y to obtain

y = (2/c)coth_1[-(psinc5x + 2sh(cx/2))/(2cos¿x + 2ch(cx/2)].

Then Jb > 0 on R+ x R+ if and only if fb(x) > 0 for each x € (0, oo) with

fb(x) = 2cosôx + ysinâx + 2e\o(cx/2). Define m(è) = infru>00)./¿,. Since

m(b) is reached at some point in the interval [0, 2n/S], it is easily proved that

m is continuous with respect to b. Since m(+oo) — -oo and m(b) > 0 as

b | c2/4, there exists bo such that m(bo) = 0. For b = bo there exists x e

[0, 2n/ö) such that fb(x) = fb(x) = 0, leading to 2cos<5x + (c/f5)sinf5x = 0.
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In consequence, v = (cos<5x, sindx) lies either on the second or the fourth

quadrant. If v is in the fourth quadrant, fb(x - (n/2S)) < fb(x) = 0, a

contradiction with the definition of b — bo. Therefore v is in the second

quadrant and, again using fb(x) = 0, a computation shows that 2ô/c satisfies

(1.4) and bo = (I + Qj)c2/4. Since y is negative for b > b0, the definition of
fb proves that m(b) < m(bo) if b > bo, finishing the proof.

(ii) The function Jb(xo, •) is a solution of z" - (c2/4)z = 0 and therefore

has at most one simple zero.

(iii) Let yx > 0 be such that xo + yx = t. Then Jb(xo, Vi) < 0 by (ii). Since
Jb(t, 0) > 0 there exists k e (0, 1 ) such that Jb(kt + ( 1 - k)x0, ( 1 - k)yx ) = 0.

4.  A CONSEQUENCE OF THE MAXIMAL PRINCIPLE

We shall prove the following

Proposition 4.1. Assume that for some a e L°°(R/7Z) satisfying

(4.1) 0<a(t) < b   a.e. tel,

equation (2.1) has skew-periodic solutions. Then there exists a e (0, 7) such

that (3.1) has also skew-periodic solutions.

Before the proof we point out some facts on the boundary value problem

(4.2) y" + cy'+ u(t)y = 0   a.e. t e (0, x) (u e L°°(0, x)),

(4.3) y(0)=y(t) = 0,        y'(0) = -y'(x) = 1        (x > 0).

Lemma 4.2. Assume that (4.2) has a solution satisfying y(0) = y(x) = 0, 0 <

y'(0) < -y'(t) when u = ux, for some ux e L°°(0, x). Then there exists

u2 e L°°(0, t) with essinfwi < u2(t) < esssupt/i, a.e. t e (0, t), and such

that (4.2), (4.3) is solvable for u = u2.

Proof. Let u\ e L°°(R/tZ) be the periodic extension of «j. The solution

y(t) is extended to R as a solution of (2.1) for a = u* in such a way that

y(t + x) = py(t), t e R, with p = y'(x)/y'(0). In consequence p < -1 is a

Floquet multiplier and A[u*] < -(1 + exp(-cr)). The continuity of A implies

the existence of k e [0, 1] such that A[ku* + (l -k)m] = -(I +exp(-cr)) with

m = (ess sup «i + essinfwO/2. (Recall A[m] > -(I + exp(-cr))). Then (2.1)

has skew-periodic solutions (period t) for a = k2l + (1 - k)m , and it follows

that (4.2) and (4.3) is solvable for some time translation of a.

Proof of Proposition 4.1. We shall use the language and methods of control

theory (see [4]) in a proof inspired by [2]. Consider the control process

x' = A[u]x,        x = col(xx, x2),    A[u]=(_u   _cJ,

with initial state Xq = col(0, 1) and target state X\ = col(0, -1). The class

of admissible controllers is U = {« e L°°(0, t)|t > 0, 0 < u(t) < b a.e.
(e(0,i)}. Notice that the attainability of Xx is equivalent to the solvability

of (4.2), (4.3).
By assumption there exists a e L°°(R/7Z) satisfying (4.1) and y(t) skew-

periodic solution of (2.1). Let to e [0, 7) be such that y (to) = y (to + T) =

0.   It is not restrictive to assume y'(to) = -y'(to + 7) = 1 .   The function
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u(t) = a(t + to) is an admissible control and the corresponding response x(t) =

col(y(t+to), y'(t+to)) allows to attain the target set after time 7. The existence

of an optimal control for the associated time-optimal control problem follows

from [4]. Let u*(t) be the optimal control defined in (0,7*) with 0 < T* < 7
and x*(t) the corresponding response. We divide the rest of the proof in three

steps.

Step 1. x*(t) > 0 for each te(0, 7*). Since x* is a solution of (4.2) for

u = u*, the zeros of x* axe simple. By a contradiction argument assume that x*

changes sign. There exist consecutive zeros 0 < Xx ■ ■ ■ < x2n < T*, n > 1, with

(-iy(d/dt)x*(x¡) > 0. From (d/dt)x*(0) = -(d/dt)x*(T*) = 1 we infer the
existence of i, 0 < i < 2«, such that \(d/dt)x*(Xi)\ < \(d/dt)x¡(xi+x)\. After

the time translation t —> t - x¡ we apply Lemma 4.2 with x = t¡+¡ - t, and

find that the target set can be attained after time x, a contradiction with the

optimality of 7*.
Step 2. Application of the maximal principle. The Hamiltonian function

is given by H(n, x, u) = n • A[u]x = (nx - cr\2)x2 - un2Xx and M(n, x) =

max0<u<è77(?7,x, u) = (nx-cn2)x2+b(n2Xx)- . Then H(n*(t), x*(t), u*(t)) =

M(n*(t), x*(t)) a.e. t e (0, 7*), where n* - (n*, n2) is a nontrivial solution

ofn' = -A[u*(t)]Tn . In consequence

u*(t) - [ °    if ^2^ > °'
K)     \b   ifn*2(t)<Q.

Step 3. Since n2(t) and x*(t) axe solutions of adjoint equations, it follows

from Step 1 that n2(t) has at most one zero in (0, 7*). Therefore u* has at

most one jump in (0, 7*) and we can extend u* periodically so that x*(t) is

a skew-periodic solution (of period 7*). Perhaps after a time-translation we

see that u* e L°°(R/T*Z) is a switching function of the class considered in §2.

An application of Proposition 3.1 shows that 7 > 7* > x(b), concluding the

proof.

5. Proofs of the main theorems

We start this section with a result on stability of the linear equation.

Proposition 5.1. Assume that a e L°°(M/7Z) satisfies (4.1) and a ^ 0. If

(1.5) holds or T <x(b), then (2.1) is asymptotically stable.

In these assumptions it follows from Propositions 4.1, 3.1 that the equation

has no skew-periodic solutions. The next lemma will prove that there are also

no 7-periodic solutions. Then Proposition 5.1 can be proved using the same

technique of Theorem 1 in [3].

Lemma 5.2. Assume that for some a e L°°(R/7Z), a ^ 0, satisfying (4.1)

there exist nontrivial T-periodic solutions of (2.1). Then b > (I + Qt)c2/4 and

7 > x(b) + n/S where ô is given by (1.6).

Proof. Let <f>(t) be a nontrivial 7-periodic solution. Integrating over a period

/0 a(t)(j)(t) dt — 0. Then </> must change the sign. After a time translation

it can be assumed that 0(0) = 4>(x) = <fi(T) = 0, for some x e [0, 7] with
(j)'(0) = (j)'(T) = 1, (j)'(x) < 0. If, for example, 0'(O) < -cp'(x)), we apply

Lemma 4.2 to conclude that b > (1 + Qf)C2/4 and x > x(b). The Sturm
comparison theory implies that 7 - x > n/S .
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Proofs of Theorems I and II. In the assumptions of Theorem I or II(i), one

can use the same argument of [6, Theorem 1] together with Lemma 5.2 to

deduce that (1.1) has a unique 7-periodic solution x(t). Let b' < b be

such that 0 < dxg(t,x(t)) < b', t e R. Since x(b') > x(b) > 7, the
asymptotic stability is a consequence of Proposition 5.1 and the principle of

linearized stability. To prove Theorem II(ii) let a e (0,7) be such that

(3.1) is inversely unstable and let {Cn}, {Vn} be sequences in R such that

g'(Cn) —> b, g'(n„) —» 0. (It is possible since (1.7) holds.) Now let {x„} be a
sequence of functions in C°°(R/7Z) such that x„(t) = C« if r € (l/n , a- l/n)

and x„(t) = r\n if t e (o + l/n, 7 - l/n). Then g'(xn) —► bs„ in L°°-

weak* by the dominated convergence theorem. It follows from Lemma 2.1

that A[g'(xn)] < -(I + exp(-cT)) for large n . Then p„ - x'¿ + cx'n + g(x„)

satisfies (1.3) and x„ is an unstable 7-periodic solution of (1.1) for p„ = p.

The proof of the existence of the second order subharmonic uses the same kind

of degree argument found in [7, Theorem 4.2].

To finish the paper, we justify Remark 1 after Theorem II. If (1.1) has a

second order subharmonic solution x(t), then y(t) = x(t + T)-x(t) is a skew-

periodic solution of (2.1), where a e L°°(R/TZ) satisfies a(t)(x(t+T)-x(t)) =

g(t, x(t + 7)) - g(t, x(t)). In consequence, 7 > x(b).
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