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Abstract. In this paper, we have obtained two main results by using proba-

bilistic methods: (i) For a domain, we obtained a representation formula of the

bounded solution to the first boundary value problem for Schrödinger equation;

(ii) For a e Rl , under certain conditions, we proved that the bounded solu-

tion having limit a at infinity to the generalized first boundary value problem

for Schrödinger equation exists and is unique, and it is represented in explicit

formula. The results of this paper are generalizations of Chung and Rao.

1. Introduction

In 1954 J. L. Doob gave an intensive study of Laplace's equation on a do-

main D from a probabilistic point of view. The bounded solution to the gener-

alized Dirichlet problem for Laplace's equation has an interpretation in terms

of Brownian motion (see [7]). Recently, many authors have been interested in

the probabilistic treatment of the following Schrödinger equation:

jAu + cu = 0   in D.

When m(D) < oo, Chung and Rao [2] solved the problem of representing the

bounded solution to the first boundary value problem for Schrödinger equa-

tion. But when m(D) = oo , can we solve the first boundary value problem for

Schrödinger equation probabilistically? It seems that this work has not been

explored up to now. This paper contributes to the answer of such a question to

some extent.
Let Rd (d > 1) be a ¿/-dimensional Euclidean space. A domain D in

Rd is an open connected set; its boundary is dD = Df] Dc, where D is the

closure and Dc the complement of D. Let {B(t), t > 0} be the standard

Brownian motion in Rd . Px and Ex denote the probability and expectation

for the Brownian motion starting at x . The class of bounded Borel measurable

functions in D will be denoted by bB(D).
For any Borel set E we put

T£ = inf{Z>0,  B(t) i E};
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namely, the first exit time from E, with the usual convention that inf 0 =

oo. The class of points that is regular for E will be denoted by Er, Er =

{x: Px(xe = 0) = 1} (see [7]). Let x = xD . For c e bB(D), as an abbreviation

we put

c, = j c(B(r))dy,        cs,, = J c(B(r))dr.

We say that / is Holder continuous in D, iff for any compact subset C of

D there exist two constants a > 0 and M suchthat \f(x)-f(y)\ < M\\x-y\\a

for x and y in C, where || • || is the Euclidean norm in Rd .

If c is a bounded, integrable and Holder continuous function in D and

y> is an essentially bounded and essentially continuous function on dD (see

the definition in [7]), the purpose of this paper is to consider the following

generalized first boundary value problem for the Schrödinger equation:

(1)

' \Au + cu = 0,     in D,

lim   u(x) = (p(b), b e dD n (Dc)r and o is a point at which <p
D3x-+b

is continuous

d

(where A is the Laplace operator, i.e., A= Yld2/dxf , x = (xx, x2, ... , x¿)
(=i

eRd).

We know, if <p is an essentially bounded and essentially continuous function

on dD, then / is the bounded solution to the following problem (2) iff there

exists a e /?' such that / = E.(<p(B(x)) ; x < oo) + aP.(x = oo) on D.

(2)

\Au = 0,    in D,

lim   u(x) = tp(b),    b e dD n (Dc)r and b is a point at which <p
D3x—>b

is continuous.

Under certain conditions, E.(<p(B(x)) ; x < oo) + aP.(x = oo) is the unique

bounded solution to problem (2) having limit a at infinity (see [7]). In this

paper, we will obtain similar results to problem (1).

2. Some lemmas

Lemma 1. Let c e bB(D).
(i) If E.(exp(cT) ; t = oo) ^ oo z'zz D, then it is bounded on every compact

subset of D.
(ii) For a measurable function <p on dD, if E.(\q>\(B(x)) exp(cT) ; x < oo) ^

oo in D, then it is bounded on every compact subset of D.

Proof, (ii) is the result of Theorem 1.1 in [2]. The proof of (i) is similar to that

of Theorem 1.1 in [2].

Lemma 2. Let d > 3 and c be a bounded and integrable function on D. Then

E.(Jq c(B(t))dt) is bounded on D. If in addition D is unbounded, then

lim    Ex(      c(B(t))dt
x€D
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Proof. For x e D, we have

Exïx (j\(B(t))dt^ < Ex (J°° \c\(B(t))dt^j

2nd/2     Jd \\x-y\\d~2
dy,_ F(d/2- 1)   f      \c(y)\      -,

where

L
f c(y),      y eD,

°W~\o, y£D.
By using analytic methods, we can show that

/  i, „I -, dy
JD\\x-y\\d-2

led on D and

SB  L\\x-y\\d-2dy = 0

is bounded on D and

* —oo

if D is unbounded. Hence, the desired conclusion follows from these observa-

tions.

Lemma 3. Suppose d > 3. Let y> be an essentially bounded and essentially

continuous function on dD and, if D is unbounded, let <p have limit a at

infinity, where a e Rl . Then E.(tp(B(x)) ; x < oo) + aP.(x — oo) is the unique

bounded solution to the following generalized Dirichlet problem :

( ±Azz = 0, on D ;

(3)     {

lim   u(x) = tp(b),       b e dD n (DCY and b is a point at which tp
09x-»Z)

is continuous;

lim       u(x) = a,    ifD is unbounded.
( x€D, ||jc||-»oo

Proof. When Dc is transient, the result follows from Theorem 4.2.11 in [7].

When Dc is recurrent the result also follows by using Theorem 4.2.10 in [7]

together with the conclusion that {B(t), t > 0} is a recurrent process if d > 3 .

3. Main results

Theorem 1. Let c be bounded and Holder continuous on D and tp be a mea-

surable function on dD. If

ux = £.(exp(cr) ; x = oo) ^ oo

and
u2 = E.(\y>\(B(x)) exp(cT) ; x < oo) ^ oo   on D,

then ux and u2 satisfy the equation

jAm + cu - 0   on D .

Proof. Let Do be any bounded subset of D such that D0 c D. We have by
the strong Markov property,

w, =£'.(exp(cT   )ux(B(xDo))    on D0
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and
u2 = E.(exp(c^Q)u2(B(xDo))   on D0 .

Now, ux and u2 are bounded by Lemma 1. Using the method similar to that

of Theorem 2.1 in [2], we can prove ux and u2 really satisfy

jAu + cu = 0   on D .

Theorem 2. Let c be a bounded and Holder continuous function on D and
E.(exp(cT)) be bounded on D. Then for any essentially bounded and essen-

tially continuous function q> on dD, we have E.(tp(B(x))exp(cT); x < oo) +

a£'.(exp(cT) ; x = oo) is a bounded solution of equation (1), where ae /?'.

Proof. From Theorem 1 E.(tp(B(x)) exp(cT) ; x < oo) + aE.(exp(cx) ; x = oo) is

a bounded solution of the equation

jAu + CU — 0   on D.

By the method of proving Theorem 1.3 in [2], we can show that  u2 =

E.(q>(B(x)) exp(cT) ; x < oo) satisfies

lim   u2(x) = (p(b),     b e dD n (Dc)r and b is a point

at which (p is continuous,

and ux = E.(exp(cT) ; t = oo) satisfies

lim   ux(x) = 0,        bedDn(Dc)r.
D3x->b

So the desired conclusion follows from the above observations.

Let c, f e bB(D). If D is Greenian, define

GcDf = E. Qf exp(-c,)/(fi(0)dt\ ;        Gif = GDf   on D.

Theorem 3. Suppose d > 3. Lei c be a bounded, integrable, and Holder con-

tinuous function on D, and let tp be an essentially bounded and essentially

continuous function on dD. If E.(exp(cx)) is bounded on D, then u is a

bounded solution to equation (1) if and only if there is an a e /?' such that

u = E.((p(B(x)) exp(cT) ; x < oo) + aE.(exp(cT) ; x = oo)    on D .

Suppose d < 2. If D is Greenian and E.(JQT c(B(t))dt) is bounded on D,
under the above conditions, we have the same result.

Proof. Let d > 3 . If u is a bounded solution of (1), then

v = u - E.(tp(B(x)) exp(c\) ; x < oo)    on D

is a bounded solution of (1) in which tp = 0. Since Gd\c\ is bounded on D

by Lemma 2, so that |<?i>(cti)| < ||v||ooGd|c| is bounded on D (where ||u|

SUVx€d\v{x)\)   and

lim GD\c\(x) = 0,        bedDil (Dc)r   (see [7, Theorem 4.6.7]),
xeD
x->b

Gd(cv) = -2cv    (see [7, Theorem 4.6.6]).

!tc
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These imply that v - Gd(cv) is a bounded solution of (2) in which <p = 0.

Therefore we have that there is an a e Rl such that

v - Gd(cv) = aP.(x = 00)    ( v is bounded) on D.

Let p(x) = \c(x)\ + c(x), x e D. It is obvious that p(x) > 0, x e D. Using

the Markov property, it is easy to check that

GD(cv) = Gl£(\c\GD(cv)) + Gl¿l(cv) ;

P.(t = oo) = E.(exp(-\c\r); x = 00) + G]cD\\c\P.(x = 00))   on/),

so we have

v = Gp(pv) + aE.(exp(-|c|T) ; x — 00).

Let M be the operator of multiplication by p. By successive substitution

from the above equality we find

v = aE. (exp(-|c|T) ( ¿ ( jf />(/?(/)) df) //c! J ; x = 00 j

+ (G£lA0"+1ü   onD,

for any positive integer zz. Now by hypothesis, £'.(exp(cT)) < 00, in D. Then

we have

(5)      £.(exp(Cr)) = E. Íexp(-|c|T) í¿ (£ p(B(t)) dt^j   fk\ j j < 00;

(6) E.(exp(ct)) = Y(GDM)kE-(exP(-\c\r)) < °°   on D ■
k=0

Since £'.(exp(-|c|T)) > exp(-£'.(|c|T)) by Jensen's inequality applied to the

convex function e~', we have

(7) inf £.(exp(-|c|t)) > 0

Let n —» 00 in (4), it follows from (5), (6), and (7) that

V — aE.(exp(cx) ; x = 00)    in D .

Thus when d > 3 the theorem is true.

When d < 2 it can be proved similarly.

Theorem 4. Suppose d > 3. Le/ c be a bounded, integrable, and Holder continu-

ous function on D suchthat E.(exp(cT)) is bounded on D, tp be an essentially

bounded and essentially continuous function on dD and, if D is unbounded,

KmxzdD,\\x\\-*oo<p{x) = aeRl . Then

u = E.(tp(B(x)) exp(cT) ; x < 00) + a£.(exp(cT) ; x = 00)

is a bounded solution to the following problem :

(8a)

(8b)

' h Au + cu = 0, on D,

(8c)

2L

\imDBx^b u(x) = <p(b),    b e dD n (Dc)r and b is a point at which <p

is continuous,

lim x€d   u(x) = a, ifD is unbounded.
x ->oo



1106 RENYANXIA

Proof. To prove the theorem, we only need to prove that if D is unbounded,

then

lim    u(x) = a
x€D       K   !

IM-OO

( u satisfies (8a) and (8b) by Theorem 2).
By Markov property, we have

GD(cu) = E. (J c(B(t))EB(t)(<p(B(x)) cxp(cT) ; x < oo) dt

+ aE.(      c(B(t))EB{l)(exp(cx) ;x = oo)dtj

Hence,

= E. (<p(B(x)) j  c(B(t))exp(ct,t)dt; r<t

+ aE.(      c(B(t))exp(c,,T)dt; t = oo j

= E.(<p(B(x)) exp(cT) - <p(B(x)) ; x < oo)

+ a£'.(exp(cT) - 1 ; x = oo)

= u - E.(q>(B(x)) ; x < oo) - aP.(x = oo).

u - Gd(cu) = E.(tp(B(x)) ; x < oo) + aP.(x = oo)    on fl

Let z<o = E.(<p(B(x)) ; x < oo) + a/,.(r = oo) on D . It follows from Lemmas

2 and 3 that
lim    Uo(x) = a; lim    (j£)(cm) = 0.
jcgd xeD

IWI-.00 IWI-oo

Thus limxeö> iijcn—oo w(x) = q .

If we let y> = a = 1 in Theorem 4, we can easily have

Corollary 1. Suppose d > 3 ûzîî/ D is unbounded. Let c be a bounded, inte-

grable, and Holder continuous function on D. If E. (exp(cT)) is bounded on D,

then
lim    Ex(exp(cT)) = 1.
xeD

Nl-oo

Theorem 5. Suppose d > 3. Lei c be a bounded, integrable, and Holder con-

tinuous function on D, q> be an essentially bounded and essentially continuous

function on dD, and, if D is unbounded, limxeöö,||X||-,oo <P(x) = a e R1. Then

the bounded solution to (8) is unique.

Proof. To prove Theorem 5, we only need to prove if q> = 0 and a = 0,

problem (4) has only the solution u = 0 .

If u is a bounded solution to (8) in which tp = 0, a — 0, then u - Gd(cu)

is a bounded solution to (3) in which tp = 0, a = 0. It follows from Lemma 3

that
u- GD(cu) = 0.

By the proof of Theorem 3, we know u = 0.

Summing up the results of Theorems 4 and 5, we conclude with a corollary.
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Corollary 2. Under the conditions of Theorem 4,

u = E.(<p(B(x)) exp(cr) ; x < oo) + aE.(exp(cT) ; x = oo)

is the unique bounded solution to (8).

4. Further results

Now we consider the following statements:

(a) E.(exp(cT)) ^ oo in D ;

(b) .E.(exp(cT)) < oo in D;

(c) E.(exp(cr)) is bounded in D.

We know, if m(D) < oo, then (a) and (c) are equivalent. For any domain D,

we only know (a) and (b) are equivalent. But we do not know if (a) and (c) are

equivalent. The following result can possibly give some relations between (a)

and (c).

Theorem 6. Let d > 3 and c be a bounded, integrable, and Holder continuous

function such that E.(exp(cx)) ^ oo in D. If there exists an essentially bounded

and essentially continuous function <po on dD that satisfies

1. lim^göoii^n^oo (po(x) = «o e R+, if D is unbounded;

2. inf^e9D <po(x) > 0 ;
3. problem (8) in which <p = <Po has a bounded solution, then E.(exp(ct))

is bounded in D.

Proof. Let u be a bounded solution to problem (8) in which <p is an essentially

bounded and essentially continuous function on dD, and if D is unbounded,

lim^gaßi^i^oo <p(x) = a e /?' . We will show that

u = E.(tp(B(x)) exp(cT) ; x < oo) + <xE.(exp(cT) ; x = oo)    in D .

By Lemma 2 and Theorems 4.6.6, 4.6.7 in [7], we know

u-E.(f c(B(t))u(B(t))dt\

is a bounded solution to (3). It follows from Lemma 3 that

c(B(t))u(B(t)) dt) = E.((p(B(x)) ; x < oo) + aP.(x = oo)    in D .Ki<
For simplicity, let us introduce some notations. Let a e Rl , f and c be

bounded measurable functions on D, c > 0 and q> be an essentially bounded

measurable function on dD. We put

E. (J   cxp(-ct)f(B(t))dt; x < ooj = G%f;

E.(<p(B(x)) exp(-cT) ; x < oo) = HcD<p ;

E. ( f cxp(-ct) f(B(t)) dt ; x = oo) = QcDf ;
\Jo )

E.(a exp(-cT) ; x = oo) = HDa ;

G°Df=GDf;        H°D<p = HD<p;        Gj)f=GDf;        H°Da = HDa   in D.
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Thus we have

(9) u = GD(cu) + HD<p + HDa + GD(cu)    in D.

Let p be defined as in Theorem 3. For a bounded measurable function /

on D, we can prove that

(10) HD<p = H^<p + G^(\c\HD<p)    inD;

(11) GD(cu) = G^(\c\GD(cu)) + Gl¿l(cu)   inD;

(12) HDa = HlDla + GlDl(\c\HDa)    inD;

(13) Gd(cu) = G1d\\c\Gd(cu)) + G1o\cu)   inD;

(14) G^(f(HDa)+fGD(cu)) = 0   inD;

(15) G^(fHD(p + fGD(cu)) = 0   inD.

It follows from (9) and the above equalities that

u = H^<p + Gl¿l((\c\+c)u) + Hlola + GlDl((\c\ + c)u)    in D.

So we have changed (9) to another form

(16) u = H%[<p + G$(pu) + Hlnla + Glo\pu)    inD.

By the method of successive iteration, we can obtain for any positive integer
zi

(17)

u = E. (<p(B(x)) exp(-|c|t) ( Y (/T P(B(t)) dt\   fk\\ ; x < oo j

+ E. (a cxp(-\c\T) ( Y (J* P(B(D) dt}   fk\\ ; x = oo j

+ (G^M)n+xu   (M is defined as in Theorem 3) in D.

Let zz -> oo in (17). It follows from (5), (6), (7) that

zz = E.((p(B(x)) exp(cT) ; x < oo) + aE.(exp(cT) ; x - oo)    in D .

u is bounded in D.
In particular, if tp = <po, we know £\(exp(cT)) is bounded in D.
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