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GAUSSIAN PERIODS AND UNITS IN CERTAIN CYCLIC FIELDS

ANDREW J. LAZARUS

(Communicated by William Adams)

Abstract. We analyze the property of period-unit integer translation (there

exists a Gaussian period n and rational integer c such that n + c is a unit)

in simplest quadratic, cubic, and quartic fields of arbitrary conductor. This is

an extension of work of E. Lehmer, R. Schoof, and L. C. Washington for prime

conductor. We also determine the Gaussian period polynomial for arbitrary

conductor.

1. Introduction

In [10], Lehmer exhibited a remarkable property of the simplest cubic fields

of Shanks [13] and the simplest quartic fields of Gras [4]. These fields, which

were already known for their small regulators, are defined by the polynomials

Si(X) = X3 - tX2 - (t + 3)X - 1, t£l,  t>-l;

S4(X) = X4 - tX3 - 6X2 + tX + 1,        t £ Z+ ,  / / 3 .

When p = t2 + 3t + 9 (respectively, p = t2 + 16) is prime, it is the conductor of

the field. Lehmer showed that in this case the roots, which are units, differ by

a rational integer from the classical cubic and quartic Gaussian periods, whose

minimal polynomials are

X¥3(X) = X3 + X2 - ^y~X - (fl + |^ ~ * ,        a = ±(2r + 3), a=lmod3,

v4(X) = x< + x3- 3(/V1}*2 + 2ap~lp + lx
8 16

p2 - 4a2p + Sap - dp + 1
+ --    ^r/-,        a = ±t, fl=lmod4,

256

where p is the conductor. (The somewhat inconsistent normalization of a and

t is retained from the literature.) We will say that fields with a Gaussian period

differing by a rational integer from a unit of infinite order possess Period- Unit

Integer Translation (PUIT).
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Subsequently Schoof and Washington [ 12] showed that period-unit integer

translation almost defines the simplest fields. The cubic fields of prime con-

ductor with this property are precisely the Shanks fields. The quartic fields of

prime conductor where n + c is a unit of absolute norm 1 for some period n

and some c £ Z are Gras fields.

This paper extends these results to arbitrary conductor. Classical (i.e., prime

conductor p) cyclotomy defined the principal cyclotomic class of degree e to

be

8& = j^'modp, j = 0,...,p-^--l\ ,

where g is any primitive root modp. The principal Gaussian period a/o =

Hjew0 C7 ' where Ç = Çp = exp(2ni/p). Since composite conductors do not

have a primitive root, we must modify the definition. The natural extension is

to embed an abelian field K in Q[Çf], where F is the conductor of K, and

to define a/o = Tr^[ifl £f ; this coincides with the classical definition when F

is prime. The class % becomes the kernel in (Z/FZ)* of the character group

associated to K through duality.

2. The quadratic and cubic simplest fields

For completeness we begin with the easy quadratic case. The Möbius function

is denoted p{-).

Proposition 2.1. The field Q[\fm] has period-unit integer translation if and only

if m = {2t + l)2 ± 4 for some t£l+.

Proof. If AAA < 0 all units are torsion. Suppose aaa > 0. The Gaussian period

<l = j{Tix) + T{X2)) ) where r is the Gauss sum and x is the numerical character

with the same conductor as the field Q[y/m]. If am ̂  1 mod 4 then this
conductor is 4m and n vanishes. For m = lmod4, Gauss showed [7] that

?ix) — \frñ • For the trivial character x2 > t{X2) — p{m). Then the period

polynomial is X2 - p(m)X + *=£*■. If <Q[y/m] has PUIT,

±1 N^]{ti + c)= (2c + p(m))2-m ^m = {2c + Mm))2 ± 4

and the proposition follows easily. Reverse the steps to prove the converse.   D

The conductor of the field defined by the Shanks polynomial is F = t2 + 3t+9
whenever this quantity is squarefree or gcd(F, 27) = 9 and F/9 is squarefree.

We consider only these cases, otherwise we have no control over the extraneous

factors in F.

Proposition 2.2. All Shanks cubic fields with conductor F = t2 + 3/ + 9 have
PUIT.

Proof. The minimal polynomial of a/o is [2]

V3(X) -
X3-ß(F)X2-^j^X + ß(F)^f^,        3|F,

X3 - -jX - p ( — j —,    otherwise,



GAUSSIAN PERIODS 963

where F = a +21b ; a = b mod 2 ; a = 1 mod 3 in the first case and a = 3#o ,

ao = 1 mod 3 in the second. The Shanks fields are those with b = 1. Then

S3{X + (t- (|)2)/3) = XV3(±X), where (+)2 is the Jacobi symbol.   D

The Schoof-Washington result does not hold in general. The field of conduc-

tor 91 corresponding to (a, b) = (-11, 3) is not simplest but

^(X - 1) = X3 - 4X2 - 25X + 1.

3. The quartic case

To control the conductor, we restrict simplest quartic fields to the Gras poly-

nomials where t2 + 16 is not divisible by an odd square.

Theorem 1. A simplest quartic field has PUIT if and only if t = 4 or 4\t.

In the sequel K will be a real cyclic quartic number field of conductor F .

(Imaginary cyclic quartic fields are not of interest because the free part of the

unit group is generated by the fundamental unit in the quadratic subfield.) Such

a field has a unique quadratic subfield ac , whose conductor we will call m . The

parameter F/m occurs frequently, so we will denote it by G. Gal(K/Q) =

(a) = Z/4Z. u2(.) is a 2-adic valuation. If there exists a unit e such that

-1, e, and the Galois conjugates of e generate the full unit group, then e is

called a Minkowski unit. If Njfs = ex+a = ±1 then e is called a x-fdative

unit.
We have been able to prove only a weak counterpart of the Schoof-Washington

theorem.

Theorem 2. If in a real cyclic quartic field K, G = 1 and there exist a Gaussian

period n and a rational integer c such that n + c is a x-relative unit, then K

is a simplest quartic field.

The remainder of the paper is devoted to the proof of these results. Recall a

Gaussian integer a — a+bi is called primary if and only if a = 1 mod 2(1 + /).

This is equivalent to the conditions a + b = 1 mod 4 and b = 0 mod 2. Note

that b is determined only up to sign. Every Gaussian integer relatively prime to

2 has a unique primary associate. The product of primary numbers is primary

[7].

Lemma 3.1 (Hasse [6]). For m odd and G fixed, there is a one-to-one corre-

spondence between

(1) cyclic quartic fields of conductor F,

(2) conjugate pairs of numerical quartic characters of conductor F,
(3) representations ofm = a2 + b2 where a + bi is primary and furthermore

b>0,
(4) primary Gaussian integers  ip = a + bi  of norm  m, up to complex

conjugation.

Proof. The correspondence between (1) and (2) is given by the field K belong-

ing to a character x ■ The correspondence between (3) and (4) is given by A/^'1.

The relationship between ( 1 ) and (4) is more subtle. The character x may be

factored into prime power components:   x = Xp0Xp, • • • XpAg , where each Xp
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is a quartic residue symbol for primary ap lying over p in Z[/'] and £,G is

a quadratic character of conductor G. A primary element ip of norm m is

defined by ip = ]T\=o ap¡ ■   a

The case m even is handled similarly, except that \p — 2(1 + i)ipo, ^o =

nLi apj > with each choice of ^o corresponding to a different field of conductor

F.
Define a and /> by

(3.1) ip = a + bi.

The field is real if the corresponding character x is even, i.e., #(-1) = 1.

Hasse [6] expressed elements of real cyclic quartic fields in terms of a Q-basis

of four elements. The 4-tuple [xo, x\, j>o, y\] represents the number

^{xo + ôxi%/m + {y0 + iyx)x{x) + {yo - iyi)tix)),        ô = ±1,

where t{%) is the Gauss sum Yfj=\ XÜ)Íf ■ The ambiguous sign is determined

below. An element is an integer of K if and only if xo, Xx, yo, y\ £ Z and

,, Xq + Xi Xo — X[
m odd x0 = xi,        —=— = Gy0,        —=— = Gyx mod2,

m even xo = 0 mod 4,        xi = 0 mod 2.

Galois action is described easily in this basis:

o:[x0,xx,y0, ja.] h^ [x0, -Xi, -yx, }>o]•

Let x* De tne purely quartic part of x ', define p2 to be /¿(oddpart (m)). (The
subscript is selected to emphasize that oddpart is the 2-free-part.) The sign ô

is determined at [6, §7(12)]

l>2(£)2, 2fAAA,

~\p2X*i-l){që)2,       2\m.

Let t = t(^) . Multiplication of elements can be accomplished by the table1

tt = F,        t2 = G\pô\fm,        t2 = Gipâ \fm,        \fmx = ô\px.

Write a = [x0, Xi, y0, yx] € 7<\ac . Let X4 - cxX3 + c2X2 - c3X + c4 be the

minimal polynomial Iitq a. From the relations

-\ f «T2 \ C I-
2{a + a° ) = Xo + oxx \/m ,

(3.2) 16/vf a = 16a1+ff2 = x02 + mx\ - 2F(y\ + y\)

+2f5v/w(x0x1 - G(a{yl - y2) - 2by0yx)),

we obtain the

Minimal Polynomial Formula (MPF).

Cx = Xo = Tr a,

8c2 = Xq + mx2 - 2F{yl + y\) + 2{x2 - mxj),

16c3 = x0{x2 + mx2 - 2F{yl+y])) - 2mx,(x0xi - G(a(yl -y2) - 2by0yx)),

256C4 = (x02 + mx2 - 2F(y¡ + y2))2 - 4w(x0x, - G(a(y20 - yj) - 2by0yx))2.

The period polynomial is of independent interest.

'This table appears in Hasse [6]. The similar table in Gras [4] does not determine S ; neverthe-

less, her formula for the minimal polynomial of a generic element is correct.
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Theorem 3. The period polynomial of a real cyclic quartic field of conductor F

is

V4(X) = 4

X2

X4

3(f-i;
X2-p(F)X3

F2 - 4a2F + 8aF-6F+l

iJ7.2aF-3F+l
p(F)-—     -X

-X2 +

256
FGb2

16

2\G,

2\G,4 64    '
where a and b are defined by (3.1).

Proof. In Hasse's basis, a/0 = [p(F), p(F) ,1,0] because

Vo LMx) + *ix2) + m + ?ix4)),

T{X4) = P{F),

j(X2) = p(G)(G/m)2Jm-,

ô~xp(G)(G/m)2 = p(F).

The formula for t(x2) can be proved by induction on the number of primes

dividing G. The other assertions are elementary. Note particularly that if

2 || G then 2 | aaa and p(F) = 0. The proof is completed by substituting a/o

into MPF.   D

The period polynomial for odd G was determined by Nakahara [11]. The

period polynomial for F prime was discovered by Gauss [3, §22], who left the

proof as an exercise to the reader. The details appear in Bachmann [1].

Caution. Hasse [6] used x2 for the induced primitive quadratic character.

Lemma 3.2. The conductors and corresponding primary integer ip of K and the

largest root e of S4(X) depend on u2(t) and are given by

Case    v2(t) ¥

1 0

2 1

3 2

4 >3

t2+l(> 1

t2 + l6 4

f2+16 T2 z

¿±16 o

a + 4i [\a\, sgna, 1, 0]

a + 2i [2\a\, 2sgna, 1, 0]

±2 + 0/ [2è,-2,l,l]

+ l+bi [4/3,-4,1,1]

Proof. The conductor is obtained in [8, (6)] using the formulas in [5]. \p is

obtained by factoring aaa = F/G in Z[/']. The tuples for e are then verified by

substitution into MPF.2    □

Notation. Cases 1 -4 retain their meaning from this table throughout.

The proof of Theorem 2 follows almost immediately from these tuples.

Proof. If a £ Ex then from (3.2)

(3.3) (x0x, - G(a(yl -y2) - 2by0yx)) = 0.

2The tuples for e in [4] are not normalized with respect to signs.
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Let us consider the case p(F) = 1. Without loss of generality, we may assume

n = a/o because the periods are Galois conjugates. Fix G — 1 and substitute the

tuple a = a/o + c = [1 + 4c, 1, 1,0] into (3.3). Then c = ^ . From Theorem

3 and Lemma 3.2 we have (sgna)(n + c) = s . The p(F) = -1 case is handled

identically.   D

Theorem 1 is an immediate consequence of the more detailed

Proposition 3.3. Let n be the Gaussian period of a simplest quartic field. For

ceZ
Case 1. n + c is a x-felative unit for c — p(F)i+x- and no other values of c,

except for t = 1, when n - 2 is a Minkowski unit.

Case 2. n + c is a unit for c — ± 1 and no other values of c, except for t — 2,

when n ± 2 are also units.

Case 3. n + c is a unit only for t = 4 {the field of conductor 16) and c = ±1.

These units are Minkowski.

Case 4.  n + c is never a unit.

Proof. Since the periods are conjugates, it suffices to consider a/o . It is necessary

to break the proof up into the four cases depending on v2(t).

Case 1. Consider first p(F) = -1 . Substituting a/0 + c = [-1 +4c, -1, 1,0]
into MPF gives the constant term

N = c4 - c3 + (-6a2, - 3a0 - 6)c2 + {Sa¡- 3a2, - 8a0 + 1 )c - 3a0' - a¡ - 2a\ + a0 + 1

where a = 4ao + 1 . For a/o + c to be a unit, N — ± 1 .

N = 1 =* (c + a0)(c3 + (-co - l)c2

+(-5al - 2ao - 6)c - 7>al -a2,- 2ao + 1) = 0.

This factorization was carried out by the symbolic algebra package Macsyma.

The first factor corresponds to the solution c = p(F)ifx-. The second factor

has no roots mod 2, hence no roots in Z.

It turns out that N = -1 has a unique solution in which a = t = I . De-

fine N = N + 1, and consider A as a polynomial with ao fixed and c an

indeterminate.

(3.4)   Ñ = 0 => c4 - c3 + (-6a2 - 3a0 - 6)c2

+ (Sal - 3ao - 8ao + l)c - 3a^ - a¡ - 2a\ + a0 + 2 = 0.

If ao = 0, i.e., a = 1, this reduces to

(c + 2)(c3-3c2 + l) = 0.

The second factor is irreducible. Since a — 1 => F = 17 and ,«(17) =

-1, the first factor is a valid solution. A Macsyma calculation shows that

(a/o - 2)x+a -4- vT7 = e£, so it is a Minkowski unit by [9, Proposition 3.2].

We claim that this is the only solution to (3.4) for a0, c £ Z.

Claim. Equation (3.4) has no integer solutions for c for all ao / 0.

Proof. An integer solution of (3.4) corresponds to a root of N. Notice that if

ao = ±1 , N is irreducible, so assume |ao| > 2. Our intention is to show that

all four roots of N (for some fixed value of ao) occur between consecutive

integers. The roots may be located from the following table of values.
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N(c)       lim   sgn N(c)
_|ao|->oo_

3a0

3a0+ 1

3a0 + 2

-2(32a3 + 40a2, - 2a0 - 1)

-(80a2 + 40a0 + 3)

2(32a3 + 8a2 - 18a0-6)

sgn a0

sgna0

-a0-2

-ao- 1

-ao

-a0+ 1

-a0 + 2

24a0

-3

2

-3

24a0 - 12

sgna0

+

- sgn a0

All roots of the polynomials in the middle column lie in (-2, 2) ; hence for

|ao| > 2 the sign of N(c) is given by the third column. N has one irrational

root in (3ao, 3ao + 2) and three irrational roots in (-ao - 2, -ao + 2). This

accounts for all four roots.

Applying the same method to the case p(F) - 1 yields the same results up

to sign: either c = ^- or a = 1 . However, since p(17) ^ 1, a = I is not a

solution.   D

Case 2. In Case 2, G = 2 and b = 2 . From MPF,

N = N^(n + c) = N$[4c, 0, 1, 0] = c4 - (a2 + 4)c2 + a2 + 4.

The author shows in [9] that in Case 2 all units have norm 1 and that the entire

unit group is generated by e of Lemma 3.2 and the quadratic fundamental unit

Ek . Solving N = 1 in terms of c we have c £ {±Va2 + 3, ±1}. The radical

is in Z only for a = ± 1, and since b = 2 mod 4, a — -1 . This is the one

exception noted.

We can solve for n ± c in terms of s and Ek . In Hasse's basis, sk =

[2|a|, 2«2,0,0]. From the clue that

Af(>7+1) = { «,2a

a«2 > 0,

a«2 < 0,

we find that n0 + I = -e£,S8n'I+')/Vsen'!. The exceptional unit n + 2 for t = 2

was determined in the same way:  aa0 + 2 = e£e1+<7~ .

Case 3.

A£(A, + c) = l^ce{±2V/±2v/è2T8 + iA2 + 4},

N^(n + c) = -l ^c£{±2Vb2±2b + 4} .

The A = 1 case has no possible solutions of c £ Z since b > 1 . The only valid

¿a that gives an integer solution for c in the N — -1 case is b = 2, which

corresponds to ? = 4 and F = 16. Therefore in this field n ± 1 are units; in

fact, they are Minkowski units by [9, Proposition 3.2] because (a/o + 1)1+ct =

-(l-V2) = -e¡.
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Case 4.

A$(a/ + c) = Uce {±^l±7b^+f+b2+~l

N^(n + c) = -l^c£ {±\/a32±a3+i} .

Neither of these equations can have an integral solution when b > 1.   D

There is another relationship between periods and units.

Proposition 3.4. For e satisfying S4(X), the following elements are Gaussian

periods.
Case I. p(F)(esgna - ^-).

Case 2.  *=£-.

Cases 3 and 4.   ?Vf */2 .

Proof. Compare the tuples for e and n .   D
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