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LIPSCOMB'S L(A) SPACE FRACTALIZED
IN HILBERT'S I2(A) SPACE

S. L. LIPSCOMB AND J. C. PERRY

(Communicated by Dennis Burke)

Abstract. By extending adjacent-endpoint identification in Cantor's space

7V({0, 1}) to Baire's space N(A), we move from the unit interval / =

L({0, 1}) to L(A). The metric spaces L(A)"+l and L(A)°° have provided

nonseparable analogues of Nöbeling's and Urysohn's imbedding theorems. To

date, however, L(A) has no metric description. Here, we imbed L(A) in

l2(A) and the induced metric yields a geometrical interpretation of L(A) . Ex-

cept for the small last section, we are concerned with the imbedding. Once

inside l2(A), we see L(A) as a subspace of a "closed simplex" AA having the

standard basis vectors together with the origin as vertices. The part of L(A)

in each «-dimensional face a" of AA is a "generalized Sierpiñski Triangle"

called an n-web w" . Topologically, w" is ¿({0, 1, ... , n}). For n = 2,

a)2 is just the usual Sierpiñski Triangle in E2 ; for n = 3 , ft)3 is Mandelbrot's

fractal skewed web. Thus, L(A) —> 12{A) invites an extension of fractals. That

is, when \A\ infinite, Baire's Space N(A) is a "generalized code space" on \A\

symbols that addresses the points of the "generalized fractal" L(A).

1. Notation and definitions

For any set A , let N(A) be the set of all sequences of elements of A . For

a = axa2---  and b = bxb2---  in N(A), define

P(a,b)
1

min{k\ak¿bk}

Then N(A) with this metric p is a generalized Baire's 0-dimensional space.

Topologically N(A) is the countable product of discrete space A [11, p. 51].

In particular, when A = {0, 1} we have the mappings

,,:. v^ 2a,      ^ a¡

;=1 i=l

That is, there is the topological correspondence ("<->" in (1)) between  N(A)

and Cantor's middle-thirds space ^(0, 1 ) ; also, there is an identification map
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("—>" in (1)) onto the unit interval /—the so-called identification of adjacent

endpoints.
The equivalence, "<-►" in ( 1 ), reveals the endpoints of Cantor's space as eventu-

ally constant sequences of O's and l's. Generalizing this observation to arbitrary

A, endpoints of N(A) are defined [4] as the eventually constant sequences in

A . If an endpoint is a constant sequence, then its tail-index is defined as zero.

Otherwise, the tail-index of an endpoint axa2--- is the unique index j such

that a¡ ^ üj+\ = üj+2 = üj+3 = ■ ■■ . Two distinct endpoints a and b of N(A)
are adjacent when a and b have the same tail-index j > 1 ; ak = bk for each

k < j; a¡: = bj+x = bj+2 = ■■■ ; and b¡ = aj+x = a¡+2 = ■■■ . A string of

repeated a's is denoted a , e.g., axa2aaa■ ■■ — axa2a .

For a,b e N(A) define a ~ b when either a = b or a/6 are adjacent

endpoints. An induced equivalence class a is either a singleton or a doubleton

subset of N(A). Any member a = axa2 ■ ■ • of a is an expansion of a. Thus,

each a has at most two expansions. The space L(A) is the quotient space

N(A)/ ~ and the natural map p: N(A) —> L(A) is perfect [4], i.e., p is a con-

tinuous closed surjection with compact point-inverse sets. It follows that L(A)

is metric [2, p. 235; 9; 15] and that L(A) is one-dimensional [4] (the dimen-

sion is the covering dimension [11]). For applications of L(A), [5-7, 12] con-

tains nonseparable versions of Nöbeling's and Urysohn's imbedding theorems

[14, 16].
A doubleton set a e L(A) is a rational point in L(A). All other points

of L(A) are irrational. The /z-image of any constant sequence is an endpoint

of L(A). The points of L(A) can also be partitioned [7] into those of finite

character and those of infinite character; That is, a has finite character only if

some expansion axa2-- ■ of a has only finitely many symbols—{ax, a2, ...} is

finite. Every rational point of L(A) has finite character while irrational points

appear in both varieties.

Let \J{I(a)\a e A} be a system of unit segments [0, 1]. By identifying all

zeros in \J{I(a)\a e A} we get a star-shaped set S(A). Defining a metric ds
in S (A) by

( \x - y\     if x, y belong to the same segment 1(a),

\ x + y     if x, y belong to distinct segments,

we obtain a metric space called star-shaped with index A. The space S(A)

was used by Nagata [13] and Kowalsky [3] to construct general imbedding

theorems [7].

Turning to Hubert's Space, for any set A let EA be the cartesian product

of \A\ copies of the real line Ex. The metric space l2(A) is that having (1)

elements: every x = {xa} e EA such that xa = 0 for all but at most countably

many a e A and ^x^ converges; and (2) topology: that induced by the metric

d(x , y) = y/HaiX" - y*)2 •
Generalized Euclidean space ^A is the subspace of l2(A) consisting of those

{xa} with xa — 0 for all but at most finitely many a e A. If 'V(A) denotes

the set containing all the standard basis vectors ua , a e A , and the zero vector

0, then the infinite-dimensional simplex AA (in l2(A)) is the convex hull (an

intersection of closed convex sets) of 'V(A).

If A = {0, 1, ... , zz} then, as we shall see from the imbedding (given below)

of L(A) into l2(A), the (one-dimensional when zz > 0) space p(N(A)) — L(A)
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is a closed subspace of the zz-simplex a^ . In this case, the vertices of a^

are u. ==(1, 0, ... , 0), ... , u„ = (0, ... , 0, 1) and 0 = (0, 0, ... , 0). For
A = {0, I, ... , n} an n-web con is either the subspace L(A) of c# or any

image of L(A) in any zz-simplex a" under a linear homeomorphism [10] from

oß onto <t" . Any simplicial complex K induces a web complex; for every zz

replace each a" in K with its subspace co" .

The term zz-web is introduced here but was motivated by the title A Fractal

Skewed Web of plate 143 of Mandelbrot's book [8, p. 142]. The term web
complex is introduced to increase the understanding of the dense subspace M =

U„ M„ of L(A) where M0 c Mx c • • • . Indeed, each Mn is the web complex

induced from the zz-skeleton of the (possibly infinite-dimensional) simplex AA .

One can also view Mn as those points a in L(A) whose expansions contain

at most zz symbols of A . Thus, each Mn contains both rational and irrational

points of L(A), and M is the set of points of L(A) that have finite character.

2. Projecting N(A) onto Cantor subspaces

Let z e A be. fixed and define A' = A — {z}. For each element b of A',

N(A) has a subspace W(z, b) of sequences whose values lie in {z, b}:W(z, b)

is a copy of Cantor's space. For each b e A' define a continuous projection

nb: N(A) -> W(z, b) as follows:

7T¿,: axa2---i-> a\a2 ■ ■ ■    where a -{
'  z   otherwise.

The map nb is an open map since basic open sets

(ax, ... , a„) — {ax} x ■ ■ ■ x {a„} x A x A x ■ ■ ■

are mapped to open sets

nb((ax, ... , a„)) = (abx , ... , ab„) cW(z, b).

The map nb is continuous since the ^¿-inverse image of (xi, ..., x„) c W(z, b)

is an open set of the form

X(A-{b})j,  X{b}k
J K

where J c {\, 2, ... , n} is the set of indices )' for which x; / b and K is

the other set of indices, i.e., those for which xk — b. However, when A is

infinite, then N(A) is not compact and the projection %b is not a closed map:

Let {ax, a2, ...} be an infinite subset of A . Then the set

(2) F = {axbäx, a2a2ba2, a3a3a3ba3, ...}

is closed in A^(^4) while nb(F) is not closed in ^(z, b). These observations

are summarized in the following theorem.

Theorem 1. The projection nb: N(A) —► ^(z, b) is a continuous open map.

Also, %b is not closed «=> A is infinite.U J

3. Projecting L(A) onto unit interval subspaces

Again, let z € A be fixed and define A' = A - {z}.   Call p(z) - C the

zero of L(A). Let ß be any other endpoint of L(A), i.e., ß — p(b) for some
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b e A'. Using projection nb and identification p , we can induce a projection

within L(A) that takes L(A) onto the subspace p(W(z,b)) = /(£, /?) of

L(A). Diagram (3) is illustrative: pb is the restriction of p, the induced

projection is 7iß , and the subspace /(C, ß) of L(A) is a unit interval.

N(A) —Si-» f(z,6)

(3) pj |ft

L(i4)  _1^ ¡(tj),

Since zz:¿, maps adjacent endpoints in /V(^) onto adjacent endpoints in W(z, b),

Pb o nb is constant on the fibers of p . Thus, Tiß is well defined. Because the

diagram (3) is commutative and the map p is closed, itß pulls closed sets back

to closed sets and is therefore continuous.

Lemma 2. The projection iiß: L(A) —> /(£, ß) is a continuous map. Also, Uß

is not closed ■& A is infinite.

Proof. Only the characterization of %ß being not closed remains. On the one

hand, if F is the closed subset of N(A) defined by (2) then p(F) is a closed
subset of L(A). It follows that

F' = P~xp(F) = F U {axaxb, a2a2a2b, a3a3a3a3b, ...}

is closed in N(A). But pb(nb(F')) — itß(p(F)) is not closed in I(Ç, ß). On
the other hand, if A is finite then N(A) is compact. In this case, nb is closed,

and it follows that the Tiß pushes closed subsets of L(A) to closed sets.   D

Lemma 3. The projection 7ißm. L(A) —> /(Ç, ß) is not open <=> A has at least

three members.

Proof. (<=) Let B — (b, z) be a basic open set in N(A) where b / z . Let EB

be the set of points a in B such that a3 = ¿z4 = • • • . Then H = B - EB is an

open set in N(A) and p~xp(H) = H. Thus p(H) is open in L(A). However,

since A has at least three members,

nb(H) = (b,z)-{bzb}

and ¿bzz e nb(H). But then pb o nb(p(H)) is the half-closed interval

[pb(bzz),pb(bzb)).

(=>) Since C / ß and A has two members, the projection is a homeomor-

phism.    D

The following theorem is the analogue of Theorem 1 and is a combination

of Lemmas 2, 3.

Theorem 4. The projection Uß-, L(A) —> L(£, ß) is a continuous map. Also, Uß

is not closed <& A is infinite. Furthermore, Uß is not open •& A has at least

three members.

If 7iß(a) / C then we say that a has a nonzero projection into /(£, ß). The

following lemma is immediate.
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Lemma 5. Each member of L(A) has a nonzero projection into at most a count-

able number of the subspaces /(£, ß).

4. The star in L(A) and l2(A)

The subspace IL/(Ç, ß) of L(A) is homeomorphic to a star-space S(A)

with index set A [7] whenever A is infinite. There is also a copy of S (A) in

Hubert's l2(A) space: Let ub , b e A , denote the unit vectors in l2(A), i.e.,

uz. = {xa}   where xb = 1 and xa — 0 otherwise.

Then for b e A' the subspace

[0,u6]={Zue|0<Z< 1}

of l2(A) is a copy of the unit interval. Furthermore, when A is infinite, S (A)

is homeomorphic to the metric subspace [jbeA,[0, u¿] of I2(A).

The next lemma exhibits a homeomorphism y/ß from the "/?th arm," I(C,ß)

of the star in L(A) to the unit interval. The induced homeomorphism a i->

y/ß(a)ub from the ßxh arm of the star in L(A) to the bin arm of the star in

l2(A) is fundamental to the embedding of L(A) into l2(A).

Lemma 6. If we identify z with 0 and b with 1, then we can induce a homeo-

morphism y/b:W(z,b)-*W(0, 1). Then, from y/b and the identifications (pb
and px) of adjacent endpoints, we induce a unique topological correspondence

y/ß from /(£, ß) onto the unit interval [0, 1] that makes the following diagram

commute.

W(z,b) -^ W(0, 1)

(4) pb U

I(C,ß)  -.-'*   [0, 1].

For each a e L(A) and each b e A', define

ab - y/ß ojiß(a).

Also, for b = z define ah - 0. Combining diagrams (3) and (4), we see

0 < ab < 1 for each b e A and, from Lemma 5, 0 < ab for at most a

countable number of b e A . We can say more:

Lemma 7. For each a e L(A) we can choose a binary expansion xbx2 ■■ ■   of

each ab such that for each subscript ¡€{1,2,...} there is at most one b e A

with xb = 1. From this it follows that

(5) £«6<i.
b€A

Proof. For each a e L(A) choose (f>(a) = axa2 ■■■ e a. Then forb^z use

the choice function 4> to calculate

a b y/ß o nß(a) = pxoy/bo nb(axa2 ■■■)

00 xb

Plo¥b(abab2...) = y£f,

i=i
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where

(6) xf = 1 «■ ab = b & a,■ = b.

Now let i e {1, 2, ...} be fixed. Then a¡ is a fixed member of A . Thus,

a¡ = b for exactly one member b e A . But then, via (6), x* = 1 for exactly

one b e A. To see that the inequality in (5) holds, note that for i — 1 there is

at most one of b e A such that xf = 1, i.e., at most one of the ab,s contribute

1/2 to the sum in (5). An induction argument finishes the proof.    □

Corollary 8. For each a e L(A),

£(*6)2 < i •
b€A

5. The imbedding map

For each point a e L(A), map a to the point f(a) = {ab} e l2(A). Corol-

lary 8 above shows that / is into I2(A).

Lemma 9. The map f: L(A) —> l2(A) is injective.

Proof. Let a and y be distinct members of L(A) and suppose that ae a and

cey. It follows that

(7) a^c   and   a^c.

From the first condition in (7), we can choose j as the smallest index such that

(8) a = üj ^ Cj = c.

(Without loss of generality, we assume that a / z .) Now evaluate the projection

7ia at the points a and c. It follows from (8) that

(9) na(a) ¿ na(c).

Statement (9) coupled with the fact that y/a is a homeomorphism show that

either f(a) / f(y) (in which case we are finished) or

(10) 7ta(a) is adjacent to na(c).

Thus, for the rest of this proof we assume (10) to be true. Now from (8) and

the definition of j, both points in (10) have tail-index j. Furthermore, (10)

and (na(a))j — a ^ z, imply a = Cj+X = cj+2 = ■ ■ ■ . If c / z then similarly we

conclude c = aJ+x = aj+2 - ■■■ . But then a ~ c, which contradicts the second

condition in (7). Thus, only the case c — z remains: In this case, we have

c= ax ■•■aj-Xzaa- ■ ■    and   a = ax ■ ■■aJ-Xaaj+xaj+2-■■ .

From this representation of c, and the second condition in (7), there is an index

k > j such that ak / z. If ak — a then we contradict (10). Thus, for this

index k we can suppose a ^ ak ^ z . Then

%ak (a) # 7tak (c)   and   nak (a) *> nak (c).

Therefore, in this final case, and consequently in every case, we have f(a) ^

Ar)-   a
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6. The embedding map factored through N(A)

To see that the imbedding map / is both continuous and open, we first

combine diagrams (3) and (4). That is, for each b e A', define gb as the
diagonal map.

N(A) ^^+ &(z, b) -^ f (0, 1)

(11) p[
gb

L(A) -►  /(£,/?)   -► "*[(), 1]

Then define g: N(A) —> l2(A) as

g {a) = {px o y/b o nb(a)} = {gb(a)},

where gz is the zero map. From the definition of / we have

g (a) = fop(a) = {y/ßo7iß op(a)}.

That is, diagram (12) is commutative (g = fop).

N(A) —?—> l2(A)

(12) ,.\ //

L(A)

Since / is injective and g = f o p , we calculate that g and p have the same

fibers,
g-X(f(a))=p-x(f-x(f(a)))=p-x(a).

Lemma 10. The map g: N(A) —» l2(A) is continuous.

Proof. It suffices to show that if a" —» a in A^(^), then

d(g(an),g(a))^0.

Let k > 0 be given and define Ak = {ax, ... , ak} , i.e., Ak contains the first k

coordinates of a, A'k the other coordinates of a, and A'nk the complementary

set, relative to the coordinates of a" , of the first k coordinates of a".

Since a" —> a, there is an N such that whenever n > N,

a" = a¡   for 1 < i < k.

Then, when n > N,

(d(g(a"),g(a)))2=^2\gb(a")-gb(a)\2
beA

< Ei"-i+ Ei---i+ E i—i
bZAk b€A'k b^A'„k

k     J_      1   _ zc + 2
~¥ + ¥ + ¥ ~   2k   '

Lemma 11. The map f: L(A) —> l2(A) is continuous.

Proof. Since g: N(A) -* l2(A) is continuous, g pulls back open sets in l2(A)

to open g-inverse sets in N(A). But a subset of N(A) is a g-inverse set <*=*>
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it is a ^-inverse set. Since p is a quotient map, p maps open /z-inverse sets

to open sets in L(A). The continuity of / follows from the fact that for any

subset S of l2(A), f~x(S) = p(g~x(S)).   D

Lemma 12. The map f~x : f(L(A)) -> L(A) is continuous.

Proof. Suppose g(a") —> g (a) in l2(A). Then define sets

R = g-Xg(a)   and   Rn = g~xg(an)       (n = 1, 2, ...).

Because g and p have the same fibers and because p is a closed map (open

/z-inverse sets form a local base at R), it suffices to show that "/?„ —> R," i.e.,

for any open set G with R c G there is an N such that when n > N then

Rn c G. Suppose this is not the case. Then there is an infinite subset M

of N and a sequence {i^lm e M} of points r™ e Rm none of which are

members of G. There are two possibilities: Case I. The sequence {rm} has a

convergent subsequence, the limit of which must be a point p £ R. But this

would contradict the fact that g is continuous. Thus, this case is impossible.

Case II. The sequence {P"} has no convergent subsequence. In this case there

is some i > 1 such that the zth components rf, m e M, of the members

of {r™} form an infinite set. (Otherwise, we could obtain a subsequence of

{r™} that converges.) It follows that {rm} has a subsequence {s^} whose zth

components form an infinite set containing neither z nor any of the first i + 1

components of the (at most two) members of R . But then, using the notation

(11), for any k and any b = sk ,

l/2'+1 < |a(j*) - gb(a)\ < d(g(sk), g(a)).

This contradicts g(an)-* g(a).   D

The following theorem is a combination of Lemmas 9, 11, and 12.

Theorem 13. The map a h-» {ab} is a homeomorphism from L(A) into l2(A).

7. The web complexes

The imbedding a h-> {ab} maps the endpoints of L(A) to the origin and unit

basis vectors while expansions of points of L(A) convey position analogous to

the binary expansions of points in /.

Fractals appear: Web complexes Mq c Mx c ■ • ■ exist where Mn is the

union of all webs in the web complex induced from the zz-skeleton of the (pos-

sibly infinite-dimensional) simplex AA . One can also think of Mn as those

points a in L(A) with some expansion axa2--- where the set {ax, a2, ...}

has at most n + 1 members.

The union M of the webs in (jn Mn is a dense subspace of L(A) since it

contains all rational points of L(A). Inside l2(A) each rational point of L(A)

has only finitely many nonzero coordinates, i.e., each rational point is actually

in the subspace <E?A of I2(A). Indeed, on the other hand, since M consists of

those points in L(A) of finite character, we see, inside l2(A), that M c %A .

On the other hand, since M' = L(A) — M consists of those points in L(A) with

infinite character, we see M' c (l2(A) - ë'A). This subspace M' is also dense

in L(A) = Ml)M'.
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