
proceedings of the
american mathematical society
Volume 115, Number 4, AUGUST 1992

NONCOMPACT CHAIN RECURRENCE AND ATTRACTION

MIKE HURLEY

(Communicated by Charles C. Pugh)

Abstract. Both this paper and Chain recurrence and attraction in noncompact

spaces, [Ergodic Theory Dynamical Systems (to appear)] are concerned with

the question of extending certain results obtained by C. Conley for dynamical

systems on compact spaces to systems on arbitrary metric spaces. The basic

result is the analogue of Conley's theorem that characterizes the chain recurrent

set of / in terms of the attractors of / and their basins of attraction. The point

of view taken in the above-mentioned paper was that the given metric was of

primary importance rather than the topology that it generated. The purpose

of this note is to give results that depend on the topology induced by a metric

rather than on the particular choice of the metric.

The goal of this paper is to extend a theorem of C. Conley from the setting

of dynamical systems on compact metric spaces to metric spaces that are only

locally compact. Conley's result connects the chain recurrent set of / with the

collection of attractors and basins of attraction of /, as follows:

Theorem (Conley). If X is a compact metric space and f: X —> X is continu-

ous, then the chain recurrent set of f is the complement of the union of the sets

B(A)-A, as A varies over the collection of attractors of f ; here B(A) denotes

the basin of attraction of A (the set of points whose omega-limit sets lie in A).

Definitions are given in the next section. An earlier paper [7] described one

extension of Conley's theorem to the noncompact case. In [7] it was assumed

that the distances defined by the given metric on X were themselves important;

as a consequence some of the dynamical structures (the analogues of the chain

recurrent set and of attractors and their basins) could change if the metric was

changed—even if the new metric induced the same topology as the old. There

are circumstances where this point of view is appropriate (see [8]), but in general

it is preferable to have a theory in which the dynamical structures are invari-

ant under changes of metric (or equivalently, under topological conjugacies).

Describing such a theory is the main goal of this paper. There are two main

results. The first is the counterpart of Conley's theorem, and the second is the

existence of global Lyapunov functions in the case that X is second countable

(which is also a generalization of a theorem of Conley).

The approach taken in this paper was suggested by John Franks and the

author benefitted from conversations with him.   Part of the motivation for
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considering the connection between chain recurrence and attractors came from

several recent papers dealing with dynamics on noncompact spaces [3, 5, 6, 10].

1. Definitions and background

Suppose that (X, d) is a metric space and that /: X —► X is continuous.

If e > 0 then a nonempty open subset U of X is called E-absorbing if U

contains the e-ball about f(x) for each x in U. U is absorbing if it is e-

absorbing for some e > 0 ; in other words, U is absorbing if / maps U a

uniform distance into its interior. The closed set A = f)n>of"(U) is called the

attractor-like set determined by U. The open set cf~(U) = \J„>of~"(U) is the

set of all points whose omega-limit sets are contained in A , and it is called the

basin of A relative to U, B(A; U).
When X is compact these definitions can be simplified. Compactness implies

that: (1) U is absorbing if and only if U contains the closure of f(U) ; (2)

A is nonempty and invariant (f(A) = A) ; and (3) B(A ; U) is independent of

U in the sense that if W is a second absorbing set that also determines the

attractor-like set A, then B(A ; U) = B(A ; W). Because of (3), in the compact
case we can abbreviate B(A; U) to B(A) ; in the compact case A is usually

referred to simply as the attractor determined by U.

Without compactness the situation is less straightforward [7]: A can be

empty (even though we require that U be nonempty); A is forward-invariant

(f(A) c A), but may fail to be invariant; and different absorbing sets may de-

fine different basins even when they determine the same attractor-like set A.

In order to deal with this last difficulty the extended basin of A is defined to

be the union of the sets B(A ; U) as U varies over all the absorbing sets that

determine A . The extended basin of A will be denoted as B(A) ; in an attempt

to avoid confusion we will usually write cf~(U) instead of B(A; U) for the

basin of A relative to U . It is worthwhile to note that the extended basins of

two attractors might overlap without the attractors intersecting. This is obvious

if one of the attractors is empty; more generally all that can be said about a

point x G B(A\) n B(A2) is that either its omega-limit set is empty or else its

omega-limit set is in AXC\A2.

An e-chain (or an e-pseudo-orbit) for / is a sequence xo, Xi, ... , x„ with

the property that d(f(x¡), xj+x) < e for 0 < j < n - 1. This e-chain is said

to go from xo to x„ and have length n . In this paper the length will always be

finite and at least 1. The chain recurrent set of / is the set

WR(f) — {p\for each e > 0 there is an e-chain from p back to p}.

The chain recurrent set is always closed and forward invariant; when X is

compact it is invariant and nonempty. Note that if there is an e-chain of length

zz from p back to p, then by concatenating this chain with itself k times we

obtain an e-chain of length kn from p back to p ; thus for any chain recurrent

point p there is an arbitrarily long e-chain that begins and ends at p .

It is not hard to see a connection between the chain recurrent set of / and

the collection of absorbing sets for /. The basic observation is that if x is

a point of an e-absorbing set U, then the e-ball about f(x) is contained in

U so that any e-chain of length 1 beginning in U must also end in U. The

obvious induction now shows that any e-chain beginning in U must also end in

U . In fact slightly more is true: if 3 is any positive constant less than e , then
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any ¿-chain beginning in U must end at a point within 8 of f(U). If x e U

is chain recurrent then for any 3 there is a ¿-chain beginning and ending at

x, and so (by letting 8 -* 0) we conclude that any chain recurrent point in U

must actually be in /( U). This proves

Lemma 1.1. If U is an absorbing set for f, then WR(f) n U is contained in

JW)-
Lemma 1.1 is a first step towards proving Conley's theorem, both in the

compact case [1] and in the noncompact [7]. Unfortunately the most general

result in [7] is not as nice as Conley's theorem, unless additional assumptions

are made concerning / (for instance the assumption that f~x(K) is compact

for every compact K c X). In the next section we will modify the definitions

of absorbing set and of chain recurrence, replacing the positive constants e in

those definitions by continuous positive functions on X. With these modified

definitions we are able to obtain precisely the same conclusion as in Conley's

theorem without any additional assumptions on / ; see Theorem 1 below.

2. Variable epsilons

When one takes the view that the only intrinsically important feature of the

metric d on X is the topology that it defines, then the use of a constant e in the

definitions of absorbing sets and chain recurrence is unnatural. One alternative

is to replace the fixed e's of the last section by arbitrary positive functions. Let

3° denote the set {e: X —> (0, c»), continuous}.

Definitions. A nonempty open subset U of X is weakly absorbing for / if

there is a function e € ¿P with the property that Be^x^(f(x)) c U for

each x e U (B¿(p) denotes the ball of radius 3 centered at p). U is

weakly absorbing if and only if f(U) c U : the inclusion is a clear con-

sequence of U being weakly absorbing, and the converse follows by setting

e(x) = [d(x, f(U)) + d(x,X- U)]/2 . _
When U is weakly absorbing the set A = Ç\n>ofn(U) is the weak attractor

determined by U. As before we will set B(A; U) = cf~(U) and B(A) will
be the union of the sets B(A ; U) as U ranges over the collection of weakly

absorbing sets that determine A .

If e e 9° then x0, Xi, ... , x„ is an e(x)-chain if d(f(Xj)), xj+x) < e(f(Xj))
for 0 < j < n - 1 . A point p is called strongly chain recurrent for / if for

each e e £P there is an e(x)-chain of length at least 1 that begins and ends

at p . The set of all strongly chain recurrent points of / will be denoted as

WR+(f).

Clearly any absorbing set is weakly absorbing and WR+(f) c 'ë'R(f). When

X is compact the new definitions are equivalent to the earlier ones where e was

constant. In the noncompact case it is not hard to give examples where the new

definitions are indeed different from the old.

Example 1. Let X be the subset of the plane consisting of all points of either of

the two forms (zz, 0) or (n, 1/zz) where zz > 1 is an integer. Define /: X —> X

by f(n , 0) = (n + 1, 0) and f(n, 1/zz) = (1,0). If d is the metric inherited
from the usual metric on the plane, then the requirements that an absorbing

set be nonempty, forward invariant, and mapped uniformly inside itself show
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that any absorbing set must contain each point of the form (zz, 0). However if

e(n, y) = 1/2« then any set of the form {(zz, 0)|zz > k} is weakly absorbing.

Similarly, with this choice of e(x) it is apparent that no point of X is strongly

chain recurrent; this contrasts with the fact that every point of X on the x-

axis is chain recurrent in the weaker sense. Further features of this example are

described in [7, Example 2.4].

The proof of Lemma 1.1 can be repeated to show

Lemma 2.1. // U is weakly absorbing for f then any strongly chain recurrent

point in U is actually in f( U).

In fact, slightly more than this is true. If p e cf~(U) then there is a positive

integer zz with f"(p) e U. An argument based on the continuity of / and

the fact that U is open shows that if a constant ¿o > 0 is sufficiently small

then any r50-chain of length zz beginning at p must end in U. If we define

8(x) = min{f5o, e(x)} then the proof of Lemma 1.1 shows that any <5(x)-chain

of length at least zz + 1 that begins at p will end within do of f(U). If p is
strongly chain recurrent then there is such a chain that also ends at p . Letting

¿o go to 0 yields the following.

Lemma 2.2. If U is weakly absorbing for f then any strongly chain recurrent

point in @~(U) is actually in f(U).

Proposition 2.3. Suppose that X is a locally compact metric space. If U is

weakly absorbing for f then any strongly chain recurrent point in cf~(U) is

actually in A, the attractor-like set determined by U.

Proof. Since U is weakly absorbing for /, it is certainly weakly absorbing

for /" for every zz > 1 . Thus the proposition follows from the last lemma

provided that we can show that every strongly chain recurrent point for / is

also strongly chain recurrent for each /" ,

(1) WR+(f)eWR+(fn).

(The opposite inclusion is trivial.) The proof of (1) follows from the following

lemma, whose proof we defer to an appendix.

Lemma 2.4. Suppose that X is a locally compact metric space, that f:X—>X

is continuous, and that e: X —> (0, oo) is also continuous. Then there is a

continuous map 5 : X —► (0, oo) with the property d(x, y) < 8(x) that implies

d(f(x), f(y)) < e(f(x)) for all x e X.

Now suppose that p e WR+(f) and that zz > 1 and e e 3s are given. Using

induction and the last lemma one sees that there is a function 3 e ¿P with the

property that any ¿(x)-chain for / of length zz beginning at a point y will end

at a point that is within e(f"(y)) of f"(y). It follows that if Xq, x\ , x2,....,
xnk is a ¿(x)-chain for / of length zczz, then Xo, x„ , x2n , ... , x„k is an

e(x)-chain for f" of length zc . The concatenation argument given after the

definition of chain recurrence shows that there is a ¿(x)-chain for / that begins

and ends at p and whose length is a multiple of zz. Thus there is an e(x)-chain

for / " that begins and ends at p. This establishes ( 1 ) and so completes the
proof of the proposition.    D
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Theorem 1. If X is a locally compact metric space and f:X—>X is continuous,

then të'R+(f) is the complement of the union of the sets B(A)-A, as A varies

over the collection of attractor-like sets of f,

(2) X-WR+(f) = \jB(A)-A.

Proof. The proposition shows that the set on the right in (2) is contained in the

set on the left. The opposite inclusion is obtained via the same argument as in

[1] or [7], which goes as follows. Suppose that p is a point that is not strongly

chain recurrent, and pick e e S6 such that there is no e(x)-chain from p back

to p . Then p is not an element of the open set U = {y\ there is an e(x)-chain

from p to y} . Note, however, that f(p) is certainly in U, so that p e (f~(U).

In addition U is weakly absorbing: if y e U then there is an e(x)-chain from

p to y, and, therefore, there is an e(x)-chain from p to any point that is

within e(f(y)) of f(y). In other words, U contains the ball of radius s(f(y))

centered at f(y), which shows that U is weakly absorbing. To finish, let A be

the attractor-like set determined by U ; then p e B(A ; U) - U c B(A) -A.   D

3. Remarks

This section contains several remarks and examples to fill out the basic ex-

position of the previous section. The first question to be addressed is whether

using arbitrary positive continuous functions in the definition of strong chain

recurrence is too strong a restriction; for instance, does it force the conclusion

that the closure of the forward orbit of a strongly chain recurrent point is com-

pact? The following example shows that this is not the case; a related example

is presented in more detail on page 343 of [11]. Let X be the horizontal strip

in the plane X = (-oo, oo) x [-1, 1]. The map / on X is the time 1 map of

a flow cj). On the upper boundary of X, </> moves points to the right with unit

speed, and on the lower boundary it moves points to the left with unit speed. cf>

has a repelling fixed point at the origin. All other orbits spiral clockwise away

from the origin and have their omega-limit sets equal to the union of the two

boundary lines. As long as we have some control over the time parametrization

of the flow, say, if the speed is everywhere bounded by 1, then it is evident that

we can arrange that any point on the boundary of X is strongly chain recurrent

for /.
A second question that arises concerns the definition of the weakly attracting

set determined by a weakly absorbing set U as f)f"(U). When X is compact

it is not necessary to take the closures of the sets in the intersection, but the
following example shows that without compactness it is necessary to take the

closure.

Example 2 [7, §2.6]. Here X is a subset of the plane, consisting of a countable

number of bounded horizontal line segments:

• the bottom segment: B = {(x, 0)|0 < x < 1} ,

• the top segment:  T = {(x, 2)|0 < x < 1/2}, and
• the intermediate segments: Z„ = {(x,l/zz)|0<x<l}.

Note that the top segment includes its left end point (0, 2) while none of the

other segments include either of their end points. The map / takes B to itself,

sending (x, 0) to (x2, 0), and it sends T into B, f(x ,2) = (x + 0.5, 0).
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Each of the remaining segments is mapped to the segment directly above, the

map being f(x, 1/zz) = (x2, l/(zz- 1)) if zz > 2 and f(x, 1) = (x/2, 2). It is
not hard to see that the point (0,2) is strongly chain recurrent even though it is

not in the image of /. Since X itself is trivially absorbing, we have a strongly

chain recurrent point that is in an absorbing set but not in its image. Thus if

the closure operations are omitted in the definition of a weakly attracting set

the conclusion of Theorem 1 would be false.

Example 2 also shows that WR+ (f ) is not necessarily invariant: f(WR+(f))

(which is closed in X) does not contain the strongly chain recurrent point

(0,2). It also illustrates an important difference between the compact case and

the noncompact case: in the example there is no e-chain from (0, 2) back to

itself that is contained in WR+(f). When X is compact there is always such

an e-chain; see [1, p. 38] or [12].

The fact that a set U is weakly absorbing if and only if f(U)cU makes it

clear that the property of being weakly absorbing is maintained by topological

conjugacies. It now follows from Theorem 1 that strong chain recurrence is

also maintained by a topological conjugacy. In particular, these properties are

unaffected if the given metric is changed to a different metric, provided only

that the two metrics define the same topology on X. The failure of this result

is perhaps the main defect in the (constant e) definition of absorbing sets and

WR used in [7]. This failure is illustrated by Example 1 of §2. In that example

X was a discrete subset of the plane, and the given metric was the one inherited

from the plane. Using that metric WR(f) was nonempty; if instead we use

the equivalent metric p(x, y) = 1 if x / y then WR(f) is easily seen to be

empty.

4.  LYAPUNOV FUNCTIONS

There is a natural decomposition of WR+(f) into equivalence classes under

the relation: p ~ q if and only if for each e e 30 there are e-chains from

p to q and from q to p. Each equivalence class is called a chain transitive

component of /. The arguments of §2 make it clear that if a chain transitive

component C intersects a weakly absorbing set U then C must be contained

in the weak attractor determined by U.

A complete Lyapunov function for /: X —► X is a continuous map L: X —► R
with the following properties:

(i) L(f(x)) < x for all x , with equality if and only if x e WR+(f).
(ii) L is constant on each chain component and takes on different values

on different chain components.

(iii) If C and C are distinct chain components with the property that for

each e e ¿P there is an e-chain from C to C then L(C) > L(C').
(iv)  L(WR+(f)) is nowhere dense.

Theorem 2. Suppose that X is a locally compact, second countable metric space,

and that f: X —» X is continuous. Then there is a complete Lyapunov function

for f ■

The proof outlined below is adapted from the proof of the corresponding

theorem in [7], which in turn was adapted from proofs in [1, 4]. There are

two parts to the proof.   In the first we construct a "Lyapunov-like" function
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for a given weak attractor A. This is a continuous function h : X —► [0,2]

with the properties: h is 0 on A, h is 2 on the complement of B(A), and

0 < h(f(x)) < h(x) < 2 for all other x . This part of the argument is not much

different than the corresponding arguments in [1, 4, 7]; consequently, we will

only give a rough outline of this first part of the proof. The Lyapunov func-

tion L will be defined as an infinite linear combination of these Lyapunov-like

functions; the second part of the proof is to show that for a given / there is

a countable collection of Lyapunov-like functions that capture enough infor-

mation about the dynamics for L to satisfy properties (i)-(iv). The reduction

afforded by the second part of the proof is necessary, as it is possible for / to

have an uncountable number of distinct weak attractors; see [7] for an example.

Throughout this section we will assume that X is a locally compact, second

countable metric space. These assumptions ensure that we can write X =

\Jn>0K„ where each Kn is compact and is contained in the interior of Kn+X.

First we describe the construction of a "Lyapunov-like" function h : X —►

[0, 2] for a single weak attractor A . Write X = [J K„ as above and let y/ : X —►

[1, oo) be a continuous function with the property that y/(x) > n for x in the

complement of Kn . Let M(x) be the minimum of 1 and the distance from x

to A (set M(x) =1 if A = 0). Define

r'  '     M(x) + y/(x) • dist(x, X - B(A))

(again, take dist(x, X - B(A)) = 1 if X - B(A) = 0). <f> is continuous,
takes on values in [0, 1], is 0 only on A, and is 1 only on X - B(A). It

can be verified that each x e B(A) has a compact neighborhood on which

the functions <fi o // converge uniformly to 0 as j -» 00 . Because of this last

property, if we let g(x) = supj>0{4>(fj(x))} then g is continuous and satisfies

0 < g(f(x)) < g(x) < 1 for all"x . Define
OO

h(x) = Y,g(f'(x))/2i-
(=0

If x e A then h(f(x)) = h(x) = 0 ; if x e X -B(A) then h(f(x)) = h(x) = 2 ;
and if x € B(A) - A then 0 < h(f(x)) < h(x) < 2.

We will define L as
00

(3) L(x) = £/z„(x)/3"
«=i

where {h„} is a countable collection of Lyapunov-like functions. It is clear that

L is continuous, nonnegative and that L(f(x)) < L(x) for all x. To verify

the rest of the properties (i)-(iv) of a Lyapunov function we need to show that

if x is not strongly chain recurrent then hn(f(x)) < h„(x) for some zz, and

that if C and C are distinct chain components then there is an hn that is 0

on one of C, C and is 2 on the other.

Lemma 4.1. For any given f there is a countable subset i?x of 3s with the

property that if y e Y = X - WR+(f) then there is an e e <§1 such that no
s(x)-chain both begins and ends at y.

Proof. For brevity we shall say that a point p is e(x)-recurrent if there is an

e(x)-chain that begins and ends at p . The proof is based on the observation that



1146 MIKE HURLEY

if y is not strongly chain recurrent there is a neighborhood N of y and an e e

& with the property that no point of N is e(x)-recurrent. To establish this fact

choose 8 e3° such that y is not ¿(x)-recurrent. Let K and K' be compact

neighborhoods of y, f(y), respectively, and let 3q denote the minimum value

of 3(x) on KuK'. Choose a > 0 small enough that d(y, z) < a implies: (1)

zeK; (2) f(z) e K' ; and (3) d(f(y), f(z)) < 80/2 . Let ß be the smaller of
a and So, define e(x) = \ min{/?, 8(x)}, and let N = Bß/2(y). Suppose that

z e N and that z = z0, zx, ... , zn , zn+x = z is an e(x)-chain. We will show

that y, zx, ... , z„, y isa ¿(x)-chain, which contradicts the way that 8(x) was

chosen. Since we know that e(x) < S(x), all that must be checked is the pair

of inequalities: (a) d(f(y), zx) < 3(f(y)) and (b) d(f(zn),y) < 3(f(z„)).
Inequality (a) is true because (2) and (3) show that each of f(y) and zx is

within 3o/2 of f(z) and án < 3(f(y)). To verify (b) note first that both y and
f(zn) are within a/2 of z, which shows that f(z„) is in K. Consequently

e(/(z„)) < 8q/2, showing that f(z„) is within 8o/2 of z. Since y is also

within 8o/2 of z, we conclude that d(f(z„),y) < 3q ; as f(zn) e K this

establishes (b).
Thus there is an open cover ^ of Y such that for each U eí¿ there is

an eu(x) e ¿P such that no point of U is et/(x)-recurrent. Since Y is second
countable, ^ has a countable subcover W = {Wx, W2, ...}. Let %x denote

the functions eu(x) for the C/'s in %? that are elements of W.   D

In the following we will say that two distinct chain transitive components C

and C are distinguished by eeâ6 if either there is no e(x)-chain going from

any point of C to C or else there is none going from any point of C to C .

Our goal is to show that there is a countable subset ^ of ¿P with the property

that any pair of distinct chain transitive components of / are distinguished by

some element of §2 •

Lemma 4.2. Let ß > 0 and a compact subset K of X be given. Suppose that

J[ is a collection of chain transitive components of f satisfying

(1) f(C) nK¿0 for each Ce/.
(2) For each distinct pair C, C in ^# there is an e.e3° that distinguishes

between them and satisfies e(x) > ß for all x e K.

Then Jf is finite.

Proof. The idea is to show that the intersections of K with distinct elements of

Ji are uniformly bounded apart from each other. Suppose that C, C are in

Jf, containing the points p, p', respectively, and that f(p), f(p') are both in

K and within ß of each other. Let e(x) be the element of ¿P distinguishing C

from C , as given by condition (2). Since ß < e(f(p)) we see that {p, f(p')}

is an e(x)-chain going from C to C Similarly, {p', f(p)} is an e(x)-chain

going from C to C, and we have a contradiction to the assumption that C

and C were distinguished by e(x).   a

Corollary 4.3. There is a single element e of ¿P that satisfies e(x) = ß for all

x e K and with the property that e(x) distinguishes between any pair of distinct

chain transitive components in JÍ.

Proof. Let p(x) be the minimum of the functions given by condition (2) of

the lemma for each of the finitely many pairs of distinct elements of ./#, and

let e(x) = min{/?, ¿z(x)} .   D
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As before, write X = (jn>QKn where each Kn is compact and is contained

in the interior of Kn+X . Let <§2 be the countable subset of & that is obtained

by applying the corollary with ß = l/m and K = Kn as m and zz range over

the positive integers.

Lemma 4.4. Any pair of distinct chain transitive components can be distinguished

by an element of ^2.

Proof. Given a pair of distinct chain transitive components C and C , choose

zz large enough that both f(C) and f(C) meet Kn . Since they are distinct

there is an e e ¿P that distinguishes them. Pick m large enough that 1/zrz

is less than the minimum value of e(x) on K„ . Then the element of %2

corresponding to this choice of m and zz distinguishes C from C .   D

Now that we have Lemmas 4.1 and 4.4 we can finish the construction of the

complete Lyapunov function L. Let Z c X be a countable dense subset of

X, and let «? denote the union of the two countable subsets of ¿P given by

Lemmas 4.1 and 4.4. For each z e Z and each e e % let U(z, e) be the

set of all possible end points of e(x)-chains that begin at z ; as in the proof of

Theorem 1, each of these countably many sets is open and absorbing. List them

in some order, Ux, U2, ... ; for each n let A„ be the weak attractor determined

by Un and let h„ be the associated Lyapunov-like function. Define L by

oo

L(x) = £/zn(x)/3".

«=i

The properties (i)-(iv) defining a Lyapunov function are now verifiable: the

density of Z combined with the properties of the collection §>[ of Lemma 4.1

imply property (i), while properties (ii) and (iii) follow from Lemma 4.4. (iv)

is a consequence of the fact that each hn is either 0 or 2 on any given chain

component, which shows that L\WR+(f) is a subset of the Cantor middle-third

set. For details of the argument consult [7].

5. Appendix: proof of Lemma 2.4

The proof of Lemma 2.4 uses the fact that any metric space is paracompact

so that there is a continuous partition of unity that is subordinate to any given

open cover of the space [2, 9]. Recall that X is locally compact and the two

functions /: X —» X and e: X —► (0, oo) are continuous. Define a function

zc: X —► (0, oo) by zc(x) = sup{0 < a < l\Ba(x) is compact}. Note that if

q < zc(x) then a - d(x, y) < K(y), from which it follows that zc(x) - K(y) <

d(x, y), so zc is continuous.

Now define n: X —» (0, oo) by

z/(x) = sup{0 < a < K(x)/2\f(Ba(x)) c BF,(f(x))(f(x))}.

In general r\ is not continuous, but it is lower semicontinuous. To verify the

semicontinuity of r\ at p choose constants a, ß satisfying 0 < a < ß < n(p).

By the definition of n we know that Bß(p) is compact and that f(Bß(p)) c

Bs(f(x))(f(x)) ■ Since f(Bß(p)) is compact, there is a constant k < s(f(x)) such

that f(Bß(p)) c Bx(f(x)). Now if y is close enough to p we can conclude

all of the following: (i) Ba(y) c Bß(p) ; (ii) Bk(f(p)) C B£{f{y))(f(y)) ; and (iii)
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a < K(y)/2. It follows from (i)-(iii) that a < n(y) as long as y is sufficiently

close to p . Hence liminfy_p n(y) > n(p), and the lower semicontinuity of n

is established.
Let S? be the open cover of X by the balls BK(xy2(x). Note that each of

these balls has compact closure. By paracompactness there is a locally finite

open cover & = {F¡} refining & and a continuous partition of unity {y/¡}

subordinate to &~. Since each F¡ has compact closure, zz is bounded away

from 0 on F¡, say n(x) > 2y, > 0 on F¡. Now define 3(x) - J2 y¡Wi(x). Since

y/i(x) — 0 unless x e F¡ we see that y/¡(x) ^ 0 implies that y¡ < n(x)/2, so

that 8(x) < ^2n(x)y/j(x)/2 = n(x)/2, which by the definition of n implies

that f(Bô(x)(x)) c Be{f{x))(f(x)), as desired.
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