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GLOBAL ATTRACTIVITY
IN NONLINEAR DELAY DIFFERENCE EQUATIONS

V. LJ. KOCIC AND G. LADAS

(Communicated by Charles Pugh)

Abstract. We obtain a set of sufficient conditions under which all positive

solutions of the nonlinear delay difference equation x„+l = x„f(xn_k), n =

0,1,2,..., are attracted to the positive equilibrium of the equation. Our

result applies, for example, to the delay logistic model JVI+i = aN¡/(\ +ßNt_k)

and to the delay difference equation xn+i = x„er^~x"-k'1 .

1. Introduction and preliminaries

Our aim in this paper is to establish the following global attractivity result

for the nonlinear delay difference equation

(1) xn+x =xnf(xn_k),        « = 0,1,2,....

Theorem 1. Assume that k is a positive integer and that f satisfies the following

properties:

(2)(i) / e C[[0, oo), (0, oo)] and f(u) is nonincreasing in u ;

(ii) The equation f(x) = 1 has a unique positive solution;

(iii) If x denotes the unique positive solution of f(x) — 1 then

(3) [xf(x) - x](x -x) > 0    forx^x;

(iv) The only solution of the equation

(4) x[f(x(fix))k)]k = x

in the interval 0 < x < x(f(0))k is x = x.

Then x is a global attractor of all positive solutions of (I).

In §3 we show that when k = 1, condition (iv) of Theorem 1 is a direct

consequence of conditions (i)-(iii). It will also be clear from the proof of

Theorem 1 that the conclusion of the theorem remains true if conditions (iii)

and (iv) are replaced by the following condition:
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(iii') The only solution of the equation x[f(x(f(x)k+x)]k+x = x in the in-

terval 0 < x < x(f(0))k+x is x = x.

By a solution of (1) we mean a sequence {x„} that is defined for n > -k

and that satisfies (1) for « > 0. If a_k, a_k+l, ... , üq are (k + 1) given

nonnegative numbers, then ( 1 ) has a unique solution satisfying the initial con-

ditions

(5) Xi = a¡    for i = -k, ... , 0.

If

(6) a_k , ... , a_i e [0, oo)     and     ao€(0,oo)

then, clearly, the solution of the initial value problem (1) and (5) is positive

for « > 0. In this paper, we will only investigate solutions of ( 1 ) whose initial

values satisfy condition (6). Such solutions will also be called positive solutions.

An immediate application of Theorem 1 is to the discrete delay logistic model

aN,

Vi+1 - 1 + ßNt_k '

which was proposed by Pielou in her books [6, p. 22; 7, p. 79] as a discrete

(7) Nt.

which was proposed by Pielou i

analog of the delay logistic equation

N(t) = rN(t)
,_ N(t-x)

P

Theorem 1 can also be applied to the more general discrete delay model

which for k = 0 is the population model for annual plants that was derived

in [8].
For k = 1 , Theorem 1 was established by a different proof in [3]. The local

stability analysis for biological models described by ( 1 ) was presented by Levin

and May in [5]. See also Bergh and Getz [1].
Some powerful and elegant global stability results for difference equations

were recently obtained by Karakostas, Philos, and Sficas [2]; however, their

range of applicability is different from the results in this paper.

We hope that our results will be useful in investigating the global stability

of difference equations in which, according to Levin and May [5], the density

dependent mechanisms themselves operate with an explicit time delay of 7

generations; that is,

Nt+x=NlF(Nt.T).

2. Proof of Theorem 1

M    .  —  M FÍAT    _\

Let {xn} be a positive solution of (1). We must prove that

(9) lim xn = x.

There are only two cases to consider.

Case 1. For « sufficiently large,

(10) either xn > x

(11) ox xn <x.
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We will assume that (10) holds. The case where (11) holds is similar and is

omitted. Then it follows from ( 1 ) that for « sufficiently large, {x„} is eventu-

ally decreasing. Let / = lim«-^ xn . Then / > 0 and by taking limits on both

sides of (1) we find that /(/) = 1. This implies that / = x, which completes

the proof in this case.

Case 2. The sequence {x„} is "strictly" oscillatory about the positive equilib-

rium x in the following sense: There exists a sequence of positive integers {«,}

for / = 1, 2, ... such that k < «¡ < n2 < ■ ■ ■ , lim,-^ m — oo, xn¡ < x and

xn¡+\ >x for / = 1, 2, ... , and for each ¿=1,2,... some of the terms Xj

with «, < j < n¡+x are greater and some are less than x .

For each i = 1,2,... let m¡ and M¡ be any. integers in the interval

(n,■, n¡+x) such that

xm¡ = min{.x, for «, < j < «¡+i}

and

XMi = max{Xj for «, < j < ni+l} .

Then for each i — 1, 2, ...

Xffii s x, Xm¡ v. Xm¡ — X

and

XMi > X , Xm¡ > XMi-l ■

Now we claim that the following statements are true for each /' = 1, 2, ... :

(i) There exists p¡ 6 N with

max{«,, M,■ - (k + I)} < p¡ < M¡ such that

Xpi < x and x} > x    for ; = p, + 1, ... , M¡.

(ii) There exists q¡ e N with max{«,, m,■ - (k + 1)} < q¡ < m¡ such that

xq¡ > x and x} < x    for j = g¡ + 1,... , m¡.

We will only prove (i). The proof of (ii) is similar and is omitted. To this

end, it suffices to show that there exists at least one p¡ e N such that xp¡ < x

with max{«,, M¡ - (k + 1)} < p¡ < M¡. Then the desired p¡ of statement

(i) will be the greatest of all such p/'s. Assume, for the sake of contradiction,

that there exists no such p¡. Then n¡ < M¡ - (k + I) and Xj > x for all j

in the interval [M¡ - (k + I), M¡]. Furthermore, since xMi_(k+x) > x and /

is nonincreasing, it follows that f(xM,-(k+\)) < f(x) = 1 • Clearly, the above

inequality must be strict, for otherwise, f(x) = 1 would have more than one

positive solution. Hence

Xm,-1 < XMi = xM,-\f(XMi-(k+\)) < Xm¡-\ •

This is a contradiction and the proof of (i) is complete.

Let

(12) p = lim sup xn = lim sup Xm¡

and

(13) k = liminfxn = lim infxm..
n—»oo ;'—»oo
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To prove that (9) holds, it suffices to show that k = p = x. First assume that

k > 0. Then from (12) and (13) it follows that given n < 0 and e > 0, with
0 < e < k, there exists «o e N such that

k-e<xn<p + n    for « > «0 - k.

By multiplying the equations that result from ( 1 ) from « = p¡ to n - M¡ - I,

for i sufficiently large, we obtain

(14) xMi=xPin™:px f(Xj_k).

Now recall that 0 < M,■ - p¡ < k + 1. If M,■ - p, < k + 1, then since xPi < x
and Xj_k >k-e for j = p¡ + 1, ... , M,■ - 1, (14) yields

(15) xM/<x(M-e))k-

On the other hand, if M¡ - p,■ = k + 1 then ( 14) can be rewritten as

XM, = XPJ(XPI) nfi~2 f(Xj_k) ,

and so (15) also holds because, by (3), xPif(xPi) < x and

f(Xj-k) < f(k -e)     for j = pi + 1, ... , M, - 2.

As (15) holds for every £€(0,1) we conclude that

(16) p<x[f(k)]k.

If k = 0 one can see that (15) is also true with k - e replaced by 0. Therefore

(16) is true for any k > 0.
In a similar way, by multiplying the equations that result from (1) from

n = q¡ to n = m$ — 1, for i sufficiently large, and then by simplifying as above,

we are led to the estimate

(17) k>x[f(p)f.
Set Li = 0, Rx = x[f(0)]k , and for m = 1, 2, ... ,

(18) Lm+x = x[f(Rm)]k     and     Rm = x[f(Lm)]k.

Then one can show by induction that {7?m} is a decreasing sequence, {Lm} is

an increasing sequence, and fox m = 1, 2, ... ,   Lm < k< p < Rm .

Set L - limm-.oo Lm and R = linim^oo Rm . Then, by taking limits, on both

sides of (18) we find

L = x[f(R)t     and    7? = x[f(L)]k ,

and so L and R axe both solutions of (4) in the interval 0 < x < x[f(0)]k .

It follows by condition (iv) of Theorem 1 that L = M = x and the proof is

complete.

3. Remarks and applications

Remark 1. When k — 1 , condition (iv) of Theorem 1 is a direct consequence

of conditions (i)-(iii). To see this, assume for the sake of contradiction, that

(4) has a solution x' # x. We will assume that x' <x . The case where x' > x

is similar and is omitted. As x* < 3c, it follows from (3) that x'(f(x') < x.

Hence xf(x') < x2/x', and by using the decreasing nature of /, we obtain

f(xf(x')) > f(x2/x').
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Note that x ¡x' > x, and so by (3),

?2\

fW)>¥Jx-'
A"

X

From the above and the assumption that x' is a solution of (4) we find

x'
x' = xf(x(f(x'))>x x ,

and this contradiction establishes our claim.

A direct consequence of Theorem 1 and the above remark is the following

global attractivity result that was established in [4].

Corollary 1. Consider the delay logistic equation

(19) ^,=;_g_,        « = 0,1,2,...,

where a e (I, oo) and ß e (0, oo). Let {xn} be a solution of (19) with X-x > 0

and Xo > 0. Then lim„^ooX„ = (a - l)/ß .

The next result is another application of Theorem 1 to the more general delay
logistic model

ax„

1 + ßx„_k '
(20)

where

(21) ae (l,oo),  ße (0, oo),  andfceN,

Corollary 2. 7« addition to (21) assume that

(22) k<a/(a-l).

Let {xn} be a solution of (I) with

(23) x_k , ... , X-x e [0, oo)     and    Xo€(0,oo).

7«(?« limn^ooX« = (a - l)/ß .

Proof. Here f(x) = a/(l + ßx) and conditions (i)-(iii) of Theorem 1 are

clearly satisfied and x = (a- l)/ß . Finally, we will prove that if (22) holds the

condition (iv) of Theorem 1 is also satisfied. To this end, consider the function

F(x) = x-xV(x(f(x)f)r=x
a- 1

a 1 +
(a - l)ak

(l+ßx)k

for x > 0. Since 7(0) < 0 and 7(oo) = oo, condition (iv) will be satisfied if

we prove that

(24)

We have

F'(x) > 0    for* > 0 and* ¿x.

(a- l)ak
F'(x)= I-(a- iyk2a2/,2_2Ar l+ßx +

-k-\

[l + ßx)k~\

and so, clearly, F'(x) > 0 for k — 1 . For k > 2, the function

C7(r) = r + (a- i)akrk+i
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has a minimum in (0, oo) at t — íq = a[(k - l)(a - l)]llk . Hence

G(t) > G(t0) = ak[(k - l)(a - l))l'k/(k - 1),

and so for k > 2,

(25) Ftx) > 1 -[«(Ä:- 1)(«- 1)]*^ (jt^j)       •

From (22) we see that a < 1 + l/(k - 1), and so (25) implies that (24) is true.

The proof is complete.

Next, we consider the delay difference equation

(26) xn+x = xner(x~x"-k)     where r e (0, oo) and fceN.

Here f(x) = er(-x~x*> satisfies the hypotheses (i) and (ii) of Theorem 1 but not

hypothesis (iii). However, hypothesis (iii') is satisfied provided that

(27) 0<r<l/(k + l).

Therefore, the following result is true.

Corollary 3. Assume that (27) holds.  Let {xn} be a solution (26) with initial

values satisfying (23). Then lim„_oo x„ = 1.
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