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Abstract. Following a conjecture of Weinbaum, we show that every nonperi-

odic word W of length at least 2 in a free group has a cyclic permutation of the

form U V , where each of U and V occur precisely once as a cyclic subword

of W and neither occurs as a cyclic subword of W~x . In fact, we prove a

somewhat stronger version of this result and also give a number of applications

to one-relator products of groups.

1. Introduction

Let W be a cyclically reduced word of length greater than 1 in the free group

F = F{X) on some set X and assume that W is not a proper power. In a

recent paper [9], Weinbaum showed that some cyclic permutation of W has

the form U V, where U and V are nonempty cyclic subwords of W, each

of which occurs exactly once as a cyclic subword of W . Indeed, for any letter

x £XV}X~X that occurs in W, he found such a decomposition of W with U

both beginning and ending with x and V neither beginning nor ending with

x. Weinbaum conjectured in [9] that W has a cyclic permutation of the form

U V such that U and V are nonempty cyclic subwords of W, each occurring

exactly once as a cyclic subword and neither U nor V occurring as a cyclic
subword of W~x .

In this note we show that Weinbaum's conjecture is true and give some appli-

cations to the theory of one-relator products of groups. Although Weinbaum's

conjecture makes no mention of U beginning and ending with specific letters,

we are able to prove a stronger version of the conjecture, which does just that,

and so is more in the spirit of the theorem of [9].

Definition. Let W be a cyclically reduced word in the free group F on a basis

X. A (cyclic) subword U of W is said to be uniquely positioned if (i) no other

cyclic subword of W is identically equal to U and (ii) no cyclic subword of

W~x is identically equal to U.

Theorem. Let W be a cyclically reduced word in F of length greater than 1

that is not a proper power, and let x £ X be a letter such that either x or x~x
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{or both) occurs in W. Then one of the following holds:

(i) W has a cyclic permutation of the form xsPx'P£, where P is a nonempty

word containing neither x nor x~x, s, t are nonzero integers with s = ±t, and

s = ± 1 ; or

(ii) W has a cyclic permutation of the form UV, where U, V are nonempty,

uniquely positioned subwords, U begins with x±x and ends with x±x, and V

neither begins nor ends with x±x.

Note that if (i) holds then (ii) does not hold. Thus Weinbaum's Theorem in

[9] does not generalize in full. However, in (i) the subwords XsP and x'PE are

uniquely positioned, so in both cases Weinbaum's conjecture is true.

The proof of Weinbaum's conjecture in its original form is more straightfor-

ward than that of the above theorem. We give this in §2. It is similar to Pride's

proof [7] that a one-relator group presentation in which the relator is an nth

power satisfies the small cancellation condition C(2aa) .

In §3 we apply this result to one-relator products of groups. Suppose G is the

quotient of a free product (A * B) of groups by the normal closure of a single

word R = Sm , where S is cyclically reduced of length at least 2. If m > 4 then

a number of results were proved for G in [4-6], such as the Freiheitssatz: each

of A, B embeds in G via the natural homomorphism; Weinbaum's theorem:

no nonempty, proper cyclic subword of R represents the identity element of

G; the Identity Theorem (with some exceptions): the normal closure of R in

A * B, made abelian, is isomorphic as a ZG-module to ZG/(l - S)ZG; and

the word problem: if A and B have soluble word problem then so does G. A

consequence of our result is that all these theorems extend to the case m — 3,

under the additional hypothesis that no element of A or B of order 2 occurs

as a letter of S.
Finally, in §4 we prove the above stated theorem in full.

2. Proof of Weinbaum's conjecture

Theorem 2.1. Let W be a cyclically reduced word of length greater than 1 in the

free group F(X). Then some cyclic permutation of W has the form UV where

U and V are nonempty, uniquely positioned cyclic subwords of W.

Proof. Let G denote the torsion-free one-relator group (X \ W). Then G is

locally indicable [1, 3], so right-orderable [2]. Choose a right ordering < on G.

Suppose W = y\- --yn , where y¡ £ XöX~x . For 1 < i < n , let g¡ denote the

element of G represented by the initial segment yx ■ ■ ■ y i of W. Then it follows

from a result of Weinbaum [8] that the g¡ are pairwise distinct elements of G.

Let p = min{g! , ... , g„} and M = max{gi , ... , gn} (with respect to the

chosen right ordering of G), and let SM, S m denote the corresponding initial

segments of W . Then W has a cyclic permutation of the form U V , where

either Sm = SßU or Sß — S mV (depending on which of SM, Sm is longer).

We claim that U and V are uniquely positioned. To see this, suppose that U

is identical to the subword of W beginning with the (i + l)st letter and ending

with the y'th. Then, computing in G, we have gfxgj — p~x M. Since g¡> p ,

we have
gj = 8i{g¡~lSj) > P{g¡~Xgj) = PÍP~lM) = M,

with equality only if g¡ = ¡u.   Hence g¡ = p and gj = M.   Similarly  V is

identical to no other cyclic subword of W . If U (say) is identical to a cyclic
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subword C of W~x then a similar argument shows that C must be V~x . But

U is not identical to V~x since W is reduced. Hence U and V are uniquely

positioned, as claimed.

3. Applications

Let A, B be groups, and R = Sm £ A*B, where 5 is cyclically reduced of

length at least 2, and not a proper power, and m is a positive integer. Assume

also that no letter occurring in 5 has order 2 in A or B. Let Y denote the

(finite) subset of A u B consisting of those letters that occur in S or in S~x .

Then Y = Y~x and no element of Y is its own inverse. Hence there is a

subset X of Y with the property that X u X~x = Y and XnX~x = 0. If

we reinterpret S asa word in F(X) and apply Theorem 2.1, we see that, up

to cyclic permutation, S has the form U V, where U and V are nonempty,

uniquely positioned subwords of S.

If m > 4 then a number of results were proved in [4-6] about the one-

relator product group G = (A * B)/N(R), where N denotes normal closure.

Under the additional assumption that S contains no letter of order 2, we show

how to improve that to ata > 3. We require a lemma about pictures over G,

which is essentially just Pride's observation that the word 7? satisfies the small

cancellation condition C(2m) [7]. We first recall some concepts concerning

pictures over a one-relator product. For further details we refer the reader to

[4-6].
A picture T over G (on D2) consists of a finite collection of disjoint small

disks Vx, ... , v„ (called vertices) in intD2 , together with a properly embedded

1-submanifold of D2\ int{vertices} (whose components are called the arcs of

T) and a labelling function that assigns to each corner (that is, each component

of 9A;,\{edges} or of dD2\{edges}) a label (an element of A u B).

The vertex label of v¡ is the product of the labels at v¡, read anticlockwise.

This is required to be R±x in cyclically reduced form (up to cyclic permutation).

A region of T is a component of D2\T. If we assume that Y is connected and

meets dD2 then all regions are simply connected. The label of a region A is

the product of the corner labels of A, read clockwise, and is required to be 1A

or lB.

Two arcs that together bound a region are said to be parallel. In particular,

the two corner labels are mutually inverse. We also use the term parallel for

the equivalence relation generated by this relation. Thus a class of k parallel

arcs identifies two subwords of T?*1 . A pair of vertices of Y cancel if they are

joined by an arc e and their vertex labels read from the end points of e are

mutually inverse. A picture with no cancelling pair of vertices is reduced.

Lemma 3.1. If v is a vertex in a reduced picture on D2 over G that is not

connected to dD2 by arcs then there are at least 2m classes of parallel arcs

incident at v.

Proof. We may assume that S = UV as above. Then of the arcs incident at

v there are 2m special ones, dividing the vertex label 7? up into alternate U

and V segments. Suppose that two of these belong to the same parallel class

of arcs ß, say. Then ß identifies some subword Q of R, containing U or

V, with a subword Q' of R or 7?_1  (see [4]). Since U and V are uniquely
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positioned subwords of «S, it follows that Q is also uniquely positioned. Hence

ß represents a proper cancellation between v and an oppositely oriented vertex

u of the picture (in particular u ^ v). This contradicts the assumption that the

picture was reduced.

Recall from [4-6] that we associate to any picture Y on D2 a tessellation

of S2 by shrinking each vertex to a point, removing all arcs going to dD2,

shrinking each remaining class of parallel arcs to a single edge, and then em-

bedding D2 in S2. To each corner of this tessellation we associate an angle

of (ac - 2)n/k (where the corner belongs to a k-sided region). We use these

notions in the proofs of the following corollaries.

Corollary 3.2 (Isoperimetric inequality). If m > 3 and some reduced (connected)

picture on D2 over G has j interior vertices and b boundary vertices, then

j < b2/n2.

Proof. The tessellated 2-sphere T induced from this picture has the property

that each interior vertex of Y has nonpositive combinatorial curvature in T

(in the sense that the incident angles add up to at least 2n ; this follows since

there are at least six incident corners, and the minimum corner angle is n/3).

The result follows by [6, Corollary 2.4].

Corollary 3.3. If m > 3 and Y is a reduced picture on D2 over G such that

at most three vertices of Y are connected to dD2 by arcs, then all vertices of Y

are connected to dD2 by arcs.

This is a special case of Conjecture F(3) of [4].

Proof. As in the proof of Theorem F(5) in [4] it is enough to consider the case

of a connected picture with no separating vertices such that the corresponding

tessellation has no cycles of length 3 or less, other than the boundaries of tri-

angular regions. The Euler Formula tells us that the sum, over all vertices, of

the incident combinatorial angles is (2v - 4)n , where v is the total number of

vertices. If there are b boundary vertices then the sums of the incident angles

is at most 2{b - 2)n (since each interior vertex has at least six neighbours, by

Lemma 3.1, and hence angle sum at least 2n). Since boundary vertices not

connected to dD2 by arcs have at least six neighbours, they have angle sum

at least 5n/2> + (b - 2)n/b, whereas vertices connected to dD2 by arcs have

angle sum at least 7i/3 + (b - 2)n/b . An easy calculation now shows that the

number of boundary vertices connected to dD2 by arcs exceeds the number

not connected to dD2 by at least 3.

Hence b = 3, with each boundary vertex of Y connected to dD2 by arcs and

having angle sum precisely 27r/3 . In particular, these three boundary vertices

have only each other for neighbours, and so Y, being connected, has no vertices

other than those three.

As explained in [4], the following results are consequences of Corollary 3.3.

In all cases, we assume that G — (A * B)/N(Sm), with m > 3, where S is

cyclically reduced of length at least 2, containing no letters of order 2.

Theorem 3.4 (The Freiheitssatz). The natural homomorphisms A —> G and

B -* G are injective.

Theorem 3.5 (Weinbaum's Theorem). No nonempty, proper subword of Sm rep-

resents the identity element of G.
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Corollary 3.6. The word S represents an element of order m in G.

Theorem 3.7 (The Identity Theorem).

N(Sm)/[N(Sm), N(Sm)] s ZG/(l - S)ZG

as a (right) ZG-module.

Corollary 3.8. There are natural isomorphisms for all q > 3 ;

H"(G ; -) - 77V ; -) * H\B ; -) x H«(Zm ; -),

Hq(G ; -) 4- Hq(A ; -) © 77,(5 ; -) e Hq(Zm ; -) ;

a natural epimorphism

H2(G ; -) -> H2(A ; -) x 772(7? ; -) x 772(Zm ; -) ;

and a natural monomorphism

H2(G; -) - H2(A ; -) © 772(7? ; -) © 772(Zm ; -).

These are defined on the category of ZG-modules, Zm is the cyclic subgroup of

order m generated by S, and all these maps are induced by restriction on each

factor.

Finally, as in [6] we can use the isoperimetric inequality, Corollary 3.2, to

solve the word problem for G if it is soluble for A and B .

Theorem 3.9. If A and B are given by recursive presentations with soluble word

problem, then so is G. Moreover, the generalized word problem for A (and B )

in G is soluble with respect to these presentations.

The generalized word problem for a subgroup is the algorithmic problem of

recognizing whether a given word in the generators represents an element of the

subgroup, and if so, of finding a word in the generators of the subgroup that

represents the same element.

4. Proof of Main Theorem

Theorem. Let W be a cyclically reduced word in F of length greater than 1

that is not a proper power, and let x £ X be a letter such that either x or x~x

(or both) occurs in W. Then one of the following holds:

(i) W has a cyclic permutation of the form xsPx'Pe, where P is a nonempty

word containing neither x nor x~x, s, t are nonzero integers with s — ±t, and

e — ± 1 ; or
(ii) W has a cyclic permutation of the form UV, where U, V are nonempty,

uniquely positioned subwords, U begins with x±x and ends with x±x, and V

neither begins nor ends with x±x .

Proof. The proof is by double induction, first on the number of occurrences of

x and x~x in W , and second on the length of W.

Up to cyclic permutation, we have W = xn'Ax ■ ■ -x"kAk , where aai , ... , aa¿.

are nonzero integers and Ax, ... , Ak are nonempty words not involving x±x .

Let AA = max{|Az,| ; 1 < i < k}. Introduce a new letter z £ X and replace each

occurrence of x" by z and each occurrence of x~" by z~x to obtain a new

word W in X' = Xi){z} . If n > 1 then we may apply the inductive hypothesis

to W (with respect to the letter z). If (ii) holds for W then it also holds for
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W, since subwords x±n of W occur only in the places corresponding to the

letters z±x of W (by maximality of n). Suppose then that W = zaPzbP£,

with a, b, e £ {±1}, where P does not involve z. If P does not involve x

then W = xaPxßPE, with a, ß £ {±n}, so (i) holds for W. If P has the

form BxyC , with C not involving x , then C is nonempty, by maximality of

n. Put U = xaBxy and V = CxßP£. Now Bxy cannot be identical to an

initial segment of f"1, for that would force some terminal segment of Bxy to

be identical to its own inverse. Hence U can fail to be uniquely positioned in

W only if a = ß and e = 1, which is ruled out by the assumption that W is

not a proper power. Similarly, V is uniquely positioned, so (ii) holds for W.

Hence we may assume that aa = 1 (so that aa, = ±1 for each i). Next choose

some word B £ {Ax, ... , Ak} of maximal length. Once again, we take a new

letter y ^ X and replace A¡ by y whenever A¡ = B and by y~x whenever

Ai = B~x to obtain a new word W" in X U {y}. If B has length greater than

1 then W" is shorter than W. If Aj ^ B±x for some j, then there are fewer

occurrences of y±x in W" than there are of x±x in W. In either case we may

apply the inductive hypothesis to W" with respect to the letter y . Arguing as

above (using the maximality of the length of B) we see that (ii) holds for W

if it holds for W". Thus we may assume that W = CBCaBß (up to cyclic

permutation), where B does not contain x, C begins and ends with x or

x~x, and no subword of C is identical to B±x . If C has length 1 then (i)

holds for W. Otherwise write C as xyD and put U = CaBßxy, V = DB.
As in the previous paragraph, we see that U and V are uniquely positioned,

and so (ii) holds for W.
Hence we are reduced to the case where only two letters (x, y, say) of X

occur in W, and W has the form

xa'yß' ■■■xakyßk

for some k, where a,, ß,■ £ {±1}. If k < 2 then the result is clear (using

the assumption that W is not a proper power). Suppose then that k > 2 . By

Theorem 2.1 W has a cyclic permutation UV where U and V are nonempty,

uniquely positioned cyclic subwords of W. Moreover, U — p~xM in the right

ordered group G = (X \ W), where p, M are, respectively, the least and

greatest of the elements gx, ■■■ , gik of G (with respect to the right ordering)

represented by the initial segments of W. This follows from the proof of

Theorem 2.1.
If U and V have odd lengths, then one begins and ends with x-letters and

the other with y-letters and (ii) holds. Suppose then that U (and hence V) has

even length. Renumbering if necessary, we may suppose that U — xa' ■ ■ -yß<

with t > Ac/2. Let T = xai ■ ■ ■ xa>, the initial segment of U of length It—I.

If T is uniquely positioned in W, then (ii) holds (since yß,V is certainly

uniquely positioned), so we may assume that T is not uniquely positioned.

Similarly (ii) holds if the terminal segment Y of V of length 2k -2t - I is
uniquely positioned, so we can assume that Y is not uniquely positioned.

If T is identical to a cyclic subword X of W~x then X cannot intersect

T~x , for if so then the common segment of X and T~x would be identical to

its own inverse. Hence the only possibility is that X is the terminal segment

of V~x of length 2t - 1. (In particular, U and V have the same length.)

If, also,  Y is identical to a subword of W~x , then for the same reasons we
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must have Y~x identical to the terminal segment of U of length k - 1 . We

have a, = — û!jfc_i+i = a¡+x = —ock-¡ for 1 < i < t - 1 and, similarly, /?, =

-ßk-i+x = ßi-i — -ßk-i+2 for a* + 2 < i < k . Without loss of generality, we
have UV = (xy)t(yx)~t, which is cyclically conjugate to the product of two

uniquely positioned subwords xyx~x and (xy)x~ty~x(xy)'~x .

Hence (possibly interchanging the roles of Y and F if Ac = 2t) we may

assume that T is identical to a subword Z of W. If Z contains the last letter

of V, then there is an initial segment E of Z (and hence of U) identical to

a terminal segment of V. If g is the element of G represented by E, then

we have gag = p and pg = gb for some a, b £ {I, ... , 2k}. But p < ga

so gb = pg < gag = P, a contradiction. Hence Z does not contain the last

letter of V . In particular, U is an initial segment of a subword U' of U V, of

which Z is a terminal segment. If C has length 2t + X - 1 then it has period

X, in the sense that each letter agrees with the letter appearing X places after it.

Next suppose that Y is identical to a subword of W. Arguing as above,

that subword cannot contain the first letter of U, so F is a terminal segment

of a subword V of UV, of length 2k - 2t - 1 + k and period ac for some

k . The words U' and V intersect in a common segment of length X + ac - 2

and periods X and k . Since v = hcf(A, ac) > 2, it follows that this segment

(and hence also UV) has period v (see, e.g., [4, Proposition 1]). In particular,

the terminal segment of U of length v agrees with the initial segment of V

of length v . If h is the element of G represented by this segment, then we

have gch = M and Mh - g¿ for some c, d £ {I, ... , 2k}. Since M > gc
we have g¿ = Mh > gch = M, a contradiction.

Hence we must have Y identical to a subword of W~x which is necessarily

a subword of U~x , as we remarked previously. If in fact Y is identical to a

subword of T~x then, using the periodicity of U', we obtain another copy of

Y inside U'~x , displaced from the original by X letters. This process can be

repeated until we obtain a subword identical to Y~x lying inside U' but not

T. If this subword intersects Y then we have a contradiction, and if it does

not then its last letter must coincide with the last letter of U. In the later case

the terminal segment Y' of Y of length 2k -2t-2 is identical to the inverse

of a subword Y" of T. Repeating the above argument on Y" we again obtain

a contradiction, unless X = 2 .

Suppose then, finally that X = 2. Then, without loss of generality, we have

UV = (xy)'xy-x(yx)'+x-k, with t < k < 2t. If k > t + 1 then the cyclic

subwords xyxx~x and yx(yx)t+2~k(xy)t are uniquely positioned, while if

k = t + I then t > 2 since k > 2, so the subwords xy~xx and y(xy)'~x are

uniquely positioned.
This completes the proof.
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