
proceedings of the
american mathematical society
Volume 115, Number 4, AUGUST 1992

ON THE KOSTANT CONVEXITY THEOREM

FRANCOIS ZIEGLER

(Communicated by Jonathan M. Rosenberg)

Abstract. A quick proof that the coadjoint orbits of a compact connected Lie

group project onto convex polytopes in the dual of a Cartan subalgebra.

1. Introduction

Let G be a compact connected Lie group, T a maximal torus of G, g and

t their Lie algebras and it : g* —► t* the natural projection. As usual we identify

t* with the subspace of all L-fixed points in g* . Then every coadjoint orbit X

of G intersects t* in a Weyl group orbit Çlx [4], and in this setting B. Kostant

[9] has proved:

1.1. Theorem.  n(X) is the convex hull of Six ■

Alternative proofs and generalizations have appeared in [2, 5, 7, 8]; see the

monograph [3]. Our purpose here is to show that representation theory and

the projective embeddings of Borel-Weil-Tits [10, 12] allow for an elementary

proof of Theorem 1.1, bypassing the Morse theoretic or asymptotic arguments

of loc.cit.

2. Projective embeddings

If Six lies in the weight lattice A = {w e t* : ei(~w'z) = 1 V Z e ker(exp|t)},

we say that X is integral; then Q.x contains the highest weight wq of a

unique irreducible unitary G-module V [1]. The corresponding projective

space P(V), regarded as the manifold of all rank one hermitian projectors p

in V, carries canonical complex and symplectic structures J and a , defined

on tangent vectors Sp, 8'p e TPP(F) by

JSp = l[p, 8p],        a(8p, 8'p) = Tr(8'pJ8p).

Writing Eo for the eigenprojector associated to Wo , we know from [10, 12] that

the C7-orbit of E0 is a complex submanifold, X, of P( V). In particular X is

homogeneous symplectic, with momentum map <P: X -> g* readily computed
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as

(*) («D(x),Z) = JTr(xZ),

where Z m Z is the differentiated representation of g on V. By Kirillov-

Kostant-Souriau [11] <P covers a coadjoint orbit of G, namely X since

<P(E0) = w0. But X is simply connected [10], so <t> is actually a diffeomor-

phism XhI.

3. Proof of the theorem

If Theorem 1.1 holds when Q* lies in A, it follows also for Qx in RA

by rescaling, and then for the general Clx in t* = RA by a straightforward

continuity argument. So it is enough to prove Theorem 1.1 when X is integral.

Let, then, X c P(V) be as above; also let Act* be the weight diagram of

V, so that we have

Íz=£<iü,Z)Eu,   VZet,
iu€A

where Eu, denotes the eigenprojector belonging to w e A. Substituting this in

(*) exhibits 7z(<P(x)) as a convex combination of elements of A; since A lies

in the convex hull of Q.x [1] so does, therefore, n(X).

For the converse inclusion we use a variational method inspired from [6]. Let

{Wj} be an enumeration of Qx and write E; for the projectors O-'(«;_,•) =

EWj. Given a convex combination ¿^ PjWj of the Wj, we maximize the non-

negative function

/)(x) = nTr(EJx^
j

and compute its derivative Dp(\)(Sx) in the tangent direction

3x = J[Z,x],    Zet.

Since X is compact p does attain its maximum, which is positive: if p van-

ished identically, so would the product of the real analytic functions pj(x) =

Tr(Eyx) and hence also one of the p¡, whereas Pj(Ej) = 1 . Now we have

Dpj(x)(Sx) = Tr(E;-<5x) = -Ttß.j [2xTr(xZ) - Zx - xZ])

= 2Pj(x){Q>(x)-Wj, Z),

whence

Dp(x)(8x) = 2p(x) (<D(x) - £, PjWj, z) = 0   VZ e t

at the maximum. Thus <P(x) projects to the given convex combination, and

our proof is complete.
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{Note added in proof. Michèle Vergne has kindly pointed out that V. G. Kac & D. H. Peter-

son [ 13] also used projective embeddings (but not the short variational argument above) to prove

Theorem 1.1.
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