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Abstract. In this paper we prove a formula that expresses the iterated total

squaring operation in terms of modular invariant theory and provide an alter-

native proof of a classical result of Mui's.

1. Introduction

We start by recalling some notation from invariant theory (see [5]). Let

Pm = F2U1, ... , tm] ;

*«=n \XXiti)  (Ai=°'i ' ^Xi > o) ■

We set <Pm = Pm[e~l] ■ The natural action of GLOT(F2) on the F2-vector

space spanned by tx, ... , tm extends to an action on Pm and í>m ( em is fixed

in this action). Let Tm < GLm be the upper triangular subgroup. We want to

consider the rings of invariants

Am and Fm can be described as follows. We setm m

k

(1.2) Vk+l=l[(j2^ti + tk+i),        A, = 0,1;
i=\

(1.3) vk+l^^tl
ek

and define the elements Qmj e Pm inductively with the formulae

Qmj = Qm-\,jQm-\,0Vm + Qm-lJ-l

subject to the conventions

1    if m = j >0,(I   if m = j

lJ= 10   if / < 0 or m < j .
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If I = (ix, ... , im) is a multi-index, with ij e Z , we set

-/ = (-ii, ... , -im)

and write v1 for the monomial v[l ...v'm (and similarly we write Sq1 or

gq(iu-,im) for the monomial Sqh ...Sq'm , where the SqJ 's are the Steenrod

squares). In particular, we have

Am = ¥2[vfx,..., v±l] ;        Fm = F2[ß±;0, ß«,i, ••., öm,m-i] •

We observe that

Pm S H*(RP°° x •• • x ÄP00)       (m-copies) .

Here and in the sequel H* indicates the mod 2 reduced cohomology functor.

Hence Pm is acted upon by the mod 2 Steenrod algebra sé and such an action

extends, in a unique way, to an action on <Pm (see [7]). <Pm is a graded object:

the grading is obtained by assigning degree 1 to each of the variables tx, ... ,tm .

Now we consider the iterated total squaring operation Sm , defined as

Sm:H*(X)-^Q>m®H*(X)       (XaC 1^-complex)

x^zZ^',Sqh)---(t-""Sq"")(x).
ij>0

Sm can be constructed in a purely algebraic way (as in [3]) or geometrically

(e.g., see [2]).

Remark 1.4. If X isa CW'-spectrum, Sm can still be defined, but Q>m®H*(X)
should be regarded as a completed tensor product (as in [1, p. 441]). In fact,

when X is a spectrum, H*(X) is a stable ¿/-module and Sm(x) is, in general,

an infinite sum.

In this paper we exhibit an explicit nice formula for Sm(x) as an element of

Am ® H*(X) . We show that

Sm(x) = J2 v-'<8>Sq'{x),        / = (/,,..., im) ;        ij>0.
i

Moreover we construct a sequence of maps

0)m : sé* —\ Am,        m>\,

where sé, denotes the F2-dual of sé . This construction allows us to give an

alternative proof of a normalized version of a result of Múi's [3, Theorem 1,

p. 346]. In fact, we show that

(1.5) Sm(x) = $>*(£*) ®i.V)
R

where the sum runs over the multi-indices R = (rx , ... , rk) such that r, > 0

for each i - I, ... , k and k < m , {* = Çrx • • • Q is a monomial in sé* and

if indicates the corresponding element in the Milnor basis 38 of sé . We then

show that the coefficient a>m(c¡R) that appears in the RHS of (1.5) equals the

monomial <2~''0 "~'k Qr„\ A ■ ■ ■ Qr„\ k and ( 1.5) becomes

R



THE ITERATED TOTAL SQUARING OPERATION 1151

This is the announced normalized version of Mui's theorem. In particular, the

above formula expresses the properties of invariance of the operation Sm . For

related results, see also [4].

2.  A NICE FORMULA FOR  Sm(x)

This section is devoted to the proof of the following proposition.

Proposition 2.1. Let    x e H*(X). We have

(2.2) Sm(x) = YJV-' ®Sq'(x),        I = (ix, ... , im) ;        i, > 0 .

Proof. As vx = tx , the statement is trivial for m = 1. We use induction on

m. We will assume the statement true for m < n (n > 2) and prove it for

m = n . We have

(2.3) S„(x) = (J2 t;hSqh)(    Y,    (^'W2) • • • (t-^Sq^x)) .
ii>0 12.Zn>0

Our inductive hypothesis tells us that

(2.4)

5„_,(x) = "£(t^Sq^)...(t^Sq'")(x)
ij>0

= ¿ZvV2---vñ-i^s^2-"'n)(x)

«-•i n,J=oa{EjiUjtj + tk)

-'4+1

En
;,>0 k=l

->jfc-l
ILíi,...,Zí*-i=0,1   ¿Zj=l fijtj

V      E"'>0

®Sq (¿a,.» > *"■)
(X).

In the last step above we have simply substituted each vn  with its rational

expression in the t¡ 's, using (1.1), (1.2), and (1.3). Therefore, using (2.3) and

(2.4), we get

(2.5)

S„(x) = Sx

n-l

e n
,   /„>0  k=\
\2<h<n

Il ^=0,1  Ysj^Pjtj
<Sq(Í2,-.., in)

(X)

J )

In the above formula we have applied our inductive hypothesis using the

set of variables {t2, ... , t„} instead of {tx, ... , tn-X} . Since Sx is a ring

homomorphism (as is well known and easy to prove using the Cartan formula)
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we get

>k+\

«i.-.W(jc))

Here the A/, 's and the ¿z/'s are as in (2.5), / stands for (ix, ... , i„) and

we use again the fact that v\ = tx. Hence we only need to check that

n(z*jSi(tj)+sx(tk+x))
k+1~       TlEßjSm

As tj is a one-dimensional class, we have

Sx(tj) = tj + t~[xt2,        j = 2,...,n   (see [6, Lemma 2.7, p. 6]) .

Thus

k

Il {zZÀJSx(tJ) + Sx(t^)) = U{zZxAtj + tilt2) + tk+x + t;xt2k+l)
A, =0,1   7=2

= h2k ■ II(E W; + ti) + titk+i + t2k+i) ■

Similarly

Therefore

(2.6)

n    EMjm)~t-?+l-IlEt*Áhtj+t]).
ß2 ,..., ftk=0, 1   j=2

IKE^i(0) + ̂ i(^+i)) = U(^j(titj + tj) + titk+i + t2k+l)

nzvjSiitj) h-wußjihtj+t2)

If we write A   (B respectively) for the numerator (the denominator respec-

tively) of the RHS of (2.6) above, we want to check that

A = Vk+X ;        B = ek .
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We have

Vk+\=  n (Mtx + ■ ■ ■ + htk + tk+i)
A/=0,1

=   n (ti+hh + '-' + htk + tk+i)-  n (ht2 + --- + hh + tk+x)
¿,=0,1 A, =0,1

[ ((tx + fot2 + ■■■ +Xktk + tk+x)(À2t2 + ■ ■ ■ + xktk + tk+l))
A,=0,1

=   11 (htxt2 + --- + htitk + txtk+x + (ht2 + --- + htk + tk+\)2)
Xj=0,l

= n ^2txt2+---+Aktxtk+txtk+x+A2t¡+---+Akt¡+t2k+i)

A,=0,1

(as A2 = A for X = 0, 1)

= n ^2(tit2+t¡)+---+h(t\tk+tk)+titk+i+tk+i)= a.

A/=0,1

A similar argument shows that B = ek .

3.  AN ALTERNATIVE PROOF OF A RESULT OF MÚl'S

We recall that the dual of the mod 2 Steenrod algebra sé is a graded poly-

nomial algebra

with grading given by setting deg(&) = 2' - 1 .
As usual, for each multi-index R = (rx, ... , rk) with each r, > 0, we will

write £,R for the monomial £('.., c¡rkk. As it is well known, the elements of sé

dual to the monomials ÇR with respect to the basis of admissible monomials

form a basis â§ , called the Milnor basis of sé . The element of 3§ dual to £,R

is indicated by £,R .

We can define a map, which is formally identical to the iterated total squaring

operation,

Sm: sé —> Am ®sé C <pm <g>sé ,

a i—► V) v_/ <g> St?7 o a,

/

with the proviso that Am <g> j/ and <Pm ® jaf should be thought of as completed

tensor products (as in Remark 1.4), because sé is stable as a graded sé -module

and Sm(a) is, in general, an infinite sum.

Definition 3.1. Let com: sé* —> Am  be defined as follows.  Let  £, e sé* , i.e.,

£: sé -* F2   is an sé-map, where F2 has the trivial sé-action. We set

com(^) = ((id^)oSm)(l)      (lese).

In other words, com is defined by the following diagram

sf -^ A« ®s* ^ Am ® F2 2 Am

«m(£) •
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As

Sm(i) = Ev_/ ® sy1 (an 'nfinite Sum)
/

we have

ftzm(£) = (id®o(Ev"/®'V) = $>-'• <í> V)

where (i, SV) is the value of the map £ on Sq'.

Proposition 3.2.      com  is a ring homomorphism.

Proof. This is a straightforward calculation.

Proposition 3.3.

(Om(Zk) = ¿2V~I
I

where the sum runs over the multi-indices I of the form

(3.4) I = (0,...,0,2k~x,0,...,0,2k-2,..., 1,0,..., 0) ,

that is, I is the multi-index (2k~x ,2k~2, ... ,2, 1) with m-k zeros inserted

somewhere.

Proof. £k is dual to Mk = Sq2k~* Sq2*'2... Sqx and it is easy to check that

Mk does not appear in the admissible expression of any other monomial in sé .

Therefore (Çk, Sq1) = 1 if and only if Sq1 = Mk , i.e., if and only if / is of
the form (3.4).

Proposition 3.5.

«>>»(&) = Qm\oQm,k eTm c Am   Vm>'l.

Proof.     See [2, Proposition 1, p. 39].

In other words, Q~l0Qm,k is the sum of all monomials v~' with / of

the form (3.4). From Propositions 3.2, 3.3, and 3.5 we deduce the following

statement.

Corollary 3.6.

««(^HcCo-^ßa.i•••<£.*   (n=fa,...,*».
In [3] Múi defines a non-normalized version of Sm , which he calls Fm . By

non-normalized we mean that Fm does not preserve the degrees; in fact, if

x e H"(X), the degree of Fm(x) is 2m • n while Sm(x) has degree zz. Múi

proves the following result [3, p. 346].

Theorem 3.7.

R

(R = (n,...,rk) , n>0 , xeH"(X)).

Corollary 3.6 allows us to give a very simple alternative proof of a normalized

version of Theorem 3.7 above, using Sm instead of Fm .
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Theorem 3.8.

R

(R = (rx,... ,rk) ,  r,>0 ,  k<m) .

Proof.     We know, from (2.2), that

Sm(x) = Y,v-I®Sq'(x).
i

But the Milnor elements Ç*   form a basis for sé , therefore we have an ex-

pression of the form

Sm(x) = £>(£*) ®£*(x)
R

where the a(t;R) 's are suitable elements of Fm c Am . More precisely, for each

R , a(tlR) is the sum of all the monomials v~' with / suchthat ^R(Sq') = 1 ,

a(ÇR) = tom(clR)

= Q-mr:ö-rkQl,x---Ql,k (byCorollary3-6) •
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