THE ITERATED TOTAL SQUARING OPERATION

LUCIANO LOMONACO

(Communicated by Frederick Cohen)

ABSTRACT. In this paper we prove a formula that expresses the iterated total squaring operation in terms of modular invariant theory and provide an alternative proof of a classical result of Múi's.

1. Introduction

We start by recalling some notation from invariant theory (see [5]). Let

$$P_m = \mathbb{F}_2[t_1, \ldots, t_m]$$
;
 $e_m = \prod \left(\sum_{i=1}^m \lambda_i t_i\right) \qquad (\lambda_i = 0, 1, \sum_{i=1}^m \lambda_i > 0)$.

We set $\Phi_m = P_m[e_m^{-1}]$. The natural action of $GL_m(\mathbb{F}_2)$ on the \mathbb{F}_2 -vector space spanned by t_1, \ldots, t_m extends to an action on P_m and Φ_m (e_m is fixed in this action). Let $T_m \leq GL_m$ be the upper triangular subgroup. We want to consider the rings of invariants

$$\Delta_m = \Phi_m^{T_m} ; \qquad \Gamma_m = \Phi_m^{\mathrm{GL}_m} .$$

 Δ_m and Γ_m can be described as follows. We set

(1.2)
$$V_{k+1} = \prod \left(\sum_{i=1}^{k} \lambda_i t_i + t_{k+1} \right), \quad \lambda_i = 0, 1;$$

$$(1.3) v_{k+1} = \frac{V_{k+1}}{e_k}$$

and define the elements $Q_{m,j} \in P_m$ inductively with the formulae

$$Q_{m,j} = Q_{m-1,j}Q_{m-1,0}v_m + Q_{m-1,j-1}^2$$

subject to the conventions

(1.1)

$$Q_{m,j} = \begin{cases} 1 & \text{if } m = j \ge 0, \\ 0 & \text{if } j < 0 \text{ or } m < j. \end{cases}$$

Received by the editors January 27, 1991.

1991 Mathematics Subject Classification. Primary 55P99.

Key words and phrases. Invariant theory, cohomology operations.

If $I = (i_1, \ldots, i_m)$ is a multi-index, with $i_i \in \mathbb{Z}$, we set

$$-I=(-i_1,\ldots,-i_m)$$

and write v^I for the monomial $v_1^{i_1} \dots v_m^{i_m}$ (and similarly we write Sq^I or $Sq^{(i_1,\dots,i_m)}$ for the monomial $Sq^{i_1}\dots Sq^{i_m}$, where the Sq^j 's are the Steenrod squares). In particular, we have

$$\Delta_m = \mathbb{F}_2[v_1^{\pm 1}, \dots, v_m^{\pm 1}] ; \qquad \Gamma_m = \mathbb{F}_2[Q_{m,0}^{\pm 1}, Q_{m,1}, \dots, Q_{m,m-1}] .$$

We observe that

$$P_m \cong H^*(RP^{\infty} \times \cdots \times RP^{\infty}) \qquad (m\text{-copies}) .$$

Here and in the sequel H^* indicates the mod 2 reduced cohomology functor. Hence P_m is acted upon by the mod 2 Steenrod algebra $\mathscr A$ and such an action extends, in a unique way, to an action on Φ_m (see [7]). Φ_m is a graded object: the grading is obtained by assigning degree 1 to each of the variables t_1, \ldots, t_m . Now we consider the iterated total squaring operation S_m , defined as

$$S_m: H^*(X) \longrightarrow \Phi_m \otimes H^*(X)$$
 (X a CW-complex)

$$x \longmapsto \sum_{i,j>0} (t_1^{-i_1} S q^{i_1}) \cdots (t_m^{-i_m} S q^{i_m})(x) .$$

 S_m can be constructed in a purely algebraic way (as in [3]) or geometrically (e.g., see [2]).

Remark 1.4. If X is a CW-spectrum, S_m can still be defined, but $\Phi_m \otimes H^*(X)$ should be regarded as a completed tensor product (as in [1, p. 441]). In fact, when X is a spectrum, $H^*(X)$ is a stable \mathscr{A} -module and $S_m(x)$ is, in general, an infinite sum.

In this paper we exhibit an explicit nice formula for $S_m(x)$ as an element of $\Delta_m \otimes H^*(X)$. We show that

$$S_m(x) = \sum_I v^{-I} \otimes Sq^I(x), \qquad I = (i_1, \dots, i_m) ; \qquad i_j \ge 0.$$

Moreover we construct a sequence of maps

$$\omega_m : \mathscr{A}_* \longrightarrow \Delta_m$$
, $m \ge 1$,

where \mathscr{A}_* denotes the \mathbb{F}_2 -dual of \mathscr{A} . This construction allows us to give an alternative proof of a normalized version of a result of Múi's [3, Theorem 1, p. 346]. In fact, we show that

$$(1.5) S_m(x) = \sum_R \omega_m(\xi^R) \otimes \xi_*^R(x)$$

where the sum runs over the multi-indices $R=(r_1,\ldots,r_k)$ such that $r_i\geq 0$ for each $i=1,\ldots,k$ and $k\leq m$, $\xi^R=\xi_1^{r_1}\cdots\xi_k^{r_k}$ is a monomial in \mathscr{A}_* and ξ_*^R indicates the corresponding element in the Milnor basis \mathscr{B} of \mathscr{A} . We then show that the coefficient $\omega_m(\xi^R)$ that appears in the RHS of (1.5) equals the monomial $Q_{m,0}^{-r_1\cdots-r_k}Q_{m,1}^{r_1}\cdots Q_{m,k}^{r_k}$ and (1.5) becomes

$$S_m(x) = \sum_{R} Q_{m,0}^{-r_1 \cdots - r_k} Q_{m,1}^{r_1} \cdots Q_{m,k}^{r_k} \otimes \xi_*^R(x) .$$

This is the announced normalized version of Múi's theorem. In particular, the above formula expresses the properties of invariance of the operation S_m . For related results, see also [4].

2. A NICE FORMULA FOR
$$S_m(x)$$

This section is devoted to the proof of the following proposition.

Proposition 2.1. Let $x \in H^*(X)$. We have

(2.2)
$$S_m(x) = \sum_I v^{-I} \otimes Sq^I(x), \qquad I = (i_1, \ldots, i_m) ; \qquad i_j \geq 0.$$

Proof. As $v_1 = t_1$, the statement is trivial for m = 1. We use induction on m. We will assume the statement true for $m < n \pmod{n \ge 2}$ and prove it for m = n. We have

$$(2.3) S_n(x) = \left(\sum_{i_1>0} t_1^{-i_1} Sq^{i_1}\right) \left(\sum_{i_2,\dots,i_n>0} (t_2^{-i_2} Sq^{i_2}) \dots (t_n^{-i_n} Sq^{i_n})(x)\right).$$

Our inductive hypothesis tells us that

$$S_{n-1}(x) = \sum_{i_{j} \geq 0} (t_{1}^{-i_{2}} Sq^{i_{2}}) \dots (t_{n}^{-i_{n}} Sq^{i_{n}})(x)$$

$$= \sum_{i_{j} \geq 0} v_{1}^{-i_{2}} \dots v_{n-1}^{-i_{n}} \otimes Sq^{(i_{2}, \dots, i_{n})}(x)$$

$$= \sum_{i_{j} \geq 0} \prod_{k=1}^{n-1} \left(\frac{\prod_{\lambda_{j}=0, 1} \left(\sum_{j=1}^{k-1} \lambda_{j} t_{j} + t_{k} \right)}{\prod_{\mu_{1}, \dots, \mu_{k-1}=0, 1} \sum_{j=1}^{k-1} \mu_{j} t_{j}} \right)^{-i_{k+1}} \otimes Sq^{(i_{2}, \dots, i_{n})}(x) .$$

$$(2.4)$$

In the last step above we have simply substituted each v_h with its rational expression in the t_j 's, using (1.1), (1.2), and (1.3). Therefore, using (2.3) and (2.4), we get (2.5)

$$S_n(x) = S_1 \left(\sum_{\substack{i_h \geq 0 \\ 2 \leq h \leq n}} \prod_{k=1}^{n-1} \left(\frac{\prod_{\lambda_j=0,1} \left(\sum_{j=2}^k \lambda_j t_j + t_{k+1} \right)}{\prod_{\substack{\mu_j=0,1 \\ \sum \mu_i > 0}} \sum_{j=2}^k \mu_j t_j} \right)^{-i_{k+1}} \otimes Sq^{(i_2,\dots,i_n)}(x) \right).$$

In the above formula we have applied our inductive hypothesis using the set of variables $\{t_2, \ldots, t_n\}$ instead of $\{t_1, \ldots, t_{n-1}\}$. Since S_1 is a ring homomorphism (as is well known and easy to prove using the Cartan formula)

we get

$$\begin{split} S_{n}(x) &= \sum_{i_{2}, \dots, i_{n} \geq 0} \prod_{k=1}^{n-1} \left(\frac{\prod \left(\sum \lambda_{j} S_{1}(t_{j}) + S_{1}(t_{k+1}) \right)}{\prod \sum \mu_{j} S_{1}(t_{j})} \right)^{-i_{k+1}} \otimes S_{1}(Sq^{(i_{2}, \dots, i_{n})}(x)) \\ &= \sum_{i_{2}, \dots, i_{n} \geq 0} \prod_{k=1}^{n-1} \left(\frac{\prod \left(\sum \lambda_{j} S_{1}(t_{j}) + S_{1}(t_{k+1}) \right)}{\prod \sum \mu_{j} S_{1}(t_{j})} \right)^{-i_{k+1}} \otimes \sum_{i_{1} \geq 0} t_{1}^{-i_{1}} Sq^{(i_{1}, \dots, i_{n})}(x) \\ &= \sum_{i_{1}, \dots, i_{n} \geq 0} v_{1}^{-i_{1}} \prod_{k=1}^{n-1} \left(\frac{\prod \left(\sum \lambda_{j} S_{1}(t_{j}) + S_{1}(t_{k+1}) \right)}{\prod \sum \mu_{j} S_{1}(t_{j})} \right)^{-i_{k+1}} \otimes Sq^{I}(x) \; . \end{split}$$

Here the λ_h 's and the μ_l 's are as in (2.5), I stands for (i_1, \ldots, i_n) and we use again the fact that $v_1 = t_1$. Hence we only need to check that

$$v_{k+1} = \frac{\prod (\sum \lambda_j S_1(t_j) + S_1(t_{k+1}))}{\prod \sum \mu_j S_1(t_j)} .$$

As t_i is a one-dimensional class, we have

$$S_1(t_j) = t_j + t_1^{-1}t_j^2$$
, $j = 2, ..., n$ (see [6, Lemma 2.7, p. 6]).

Thus

$$\prod_{\lambda_{j}=0,1} \left(\sum_{j=2}^{k} \lambda_{j} S_{1}(t_{j}) + S_{1}(t_{k+1}) \right) = \prod \left(\sum_{j=0}^{k} \lambda_{j} (t_{j} + t_{1}^{-1} t_{j}^{2}) + t_{k+1} + t_{1}^{-1} t_{k+1}^{2} \right)
= t_{1}^{-2^{k}} \cdot \prod \left(\sum_{j=0}^{k} \lambda_{j} (t_{1} t_{j} + t_{j}^{2}) + t_{1} t_{k+1} + t_{k+1}^{2} \right).$$

Similarly

$$\prod_{\mu_2,\ldots,\mu_k=0,1} \sum_{j=2}^k \mu_j S_1(t_j) = t^{-2^k+1} \cdot \prod \sum \mu_j (t_1 t_j + t_j^2) .$$

Therefore

(2.6)
$$\frac{\prod(\sum \lambda_j S_1(t_j) + S_1(t_{k+1}))}{\prod \sum \mu_j S_1(t_j)} = \frac{\prod(\sum \lambda_j (t_1 t_j + t_j^2) + t_1 t_{k+1} + t_{k+1}^2)}{t_1 \cdot \prod \sum \mu_j (t_1 t_j + t_j^2)}.$$

If we write A (B respectively) for the numerator (the denominator respectively) of the RHS of (2.6) above, we want to check that

$$A = V_{k+1} \; ; \qquad B = e_k \; .$$

We have

$$\begin{split} V_{k+1} &= \prod_{\lambda_j=0,\,1} (\lambda_1 t_1 + \dots + \lambda_k t_k + t_{k+1}) \\ &= \prod_{\lambda_j=0,\,1} (t_1 + \lambda_2 t_2 + \dots + \lambda_k t_k + t_{k+1}) \cdot \prod_{\lambda_j=0,\,1} (\lambda_2 t_2 + \dots + \lambda_k t_k + t_{k+1}) \\ &= \prod_{\lambda_j=0,\,1} ((t_1 + \lambda_2 t_2 + \dots + \lambda_k t_k + t_{k+1})(\lambda_2 t_2 + \dots + \lambda_k t_k + t_{k+1})) \\ &= \prod_{\lambda_j=0,\,1} (\lambda_2 t_1 t_2 + \dots + \lambda_k t_1 t_k + t_1 t_{k+1} + (\lambda_2 t_2 + \dots + \lambda_k t_k + t_{k+1})^2) \\ &= \prod_{\lambda_j=0,\,1} (\lambda_2 t_1 t_2 + \dots + \lambda_k t_1 t_k + t_1 t_{k+1} + \lambda_2 t_2^2 + \dots + \lambda_k t_k^2 + t_{k+1}^2) \\ &= \prod_{\lambda_j=0,\,1} (\lambda_2 t_1 t_2 + \dots + \lambda_k t_1 t_k + t_1 t_{k+1} + \lambda_2 t_2^2 + \dots + \lambda_k t_k^2 + t_{k+1}^2) \\ &= \prod_{\lambda_j=0,\,1} (\lambda_2 t_1 t_2 + \dots + \lambda_k t_1 t_k + t_1 t_{k+1} + \lambda_2 t_2^2 + \dots + \lambda_k t_k^2 + t_{k+1}^2) \\ &= \prod_{\lambda_j=0,\,1} (\lambda_2 t_1 t_2 + t_2^2) + \dots + \lambda_k (t_1 t_k + t_k^2) + t_1 t_{k+1} + t_{k+1}^2 = A \; . \end{split}$$

A similar argument shows that $B = e_k$.

3. An alternative proof of a result of Múi's

We recall that the dual of the mod 2 Steenrod algebra $\mathscr A$ is a graded polynomial algebra

$$\mathscr{A}_* = \mathbb{F}_2[\xi_1, \xi_2, \xi_3, \dots]$$

with grading given by setting $deg(\xi_i) = 2^i - 1$.

As usual, for each multi-index $R=(r_1,\ldots,r_k)$ with each $r_i\geq 0$, we will write ξ^R for the monomial $\xi_1^{r_1}\ldots\xi_k^{r_k}$. As it is well known, the elements of $\mathscr A$ dual to the monomials ξ^R with respect to the basis of admissible monomials form a basis $\mathscr B$, called the Milnor basis of $\mathscr A$. The element of $\mathscr B$ dual to ξ^R is indicated by ξ_k^R .

We can define a map, which is formally identical to the iterated total squaring operation,

$$S_m: \mathscr{A} \longrightarrow \Delta_m \otimes \mathscr{A} \subseteq \Phi_m \otimes \mathscr{A},$$

 $\alpha \longmapsto \sum_I v^{-I} \otimes Sq^I \circ \alpha,$

with the proviso that $\Delta_m \otimes \mathscr{A}$ and $\Phi_m \otimes \mathscr{A}$ should be thought of as completed tensor products (as in Remark 1.4), because \mathscr{A} is stable as a graded \mathscr{A} -module and $S_m(\alpha)$ is, in general, an infinite sum.

Definition 3.1. Let $\omega_m \colon \mathscr{A}_* \longrightarrow \Delta_m$ be defined as follows. Let $\xi \in \mathscr{A}_*$, i.e., $\xi \colon \mathscr{A} \to \mathbb{F}_2$ is an \mathscr{A} -map, where \mathbb{F}_2 has the trivial \mathscr{A} -action. We set

$$\omega_m(\xi) = ((\mathrm{id} \otimes \xi) \circ S_m)(1) \qquad (1 \in \mathscr{A}).$$

In other words, ω_m is defined by the following diagram

$$\mathscr{A} \xrightarrow{S_m} \Delta_m \otimes \mathscr{A} \xrightarrow{\operatorname{id} \otimes \xi} \Delta_m \otimes \mathbb{F}_2 \cong \Delta_m$$

$$1 \longmapsto \omega_m(\xi) .$$

As

$$S_m(1) = \sum_I v^{-I} \otimes Sq^I$$
 (an infinite sum)

we have

$$\omega_m(\xi) = (\mathrm{id} \otimes \xi) \left(\sum_I v^{-I} \otimes Sq^I \right) = \sum_I v^{-I} \cdot \langle \xi, Sq^I \rangle$$

where $\langle \xi, Sq^I \rangle$ is the value of the map ξ on Sq^I .

Proposition 3.2. ω_m is a ring homomorphism.

Proof. This is a straightforward calculation.

Proposition 3.3.

$$\omega_m(\xi_k) = \sum_I v^{-I}$$

where the sum runs over the multi-indices I of the form

$$(3.4) I = (0, \ldots, 0, 2^{k-1}, 0, \ldots, 0, 2^{k-2}, \ldots, 1, 0, \ldots, 0),$$

that is, I is the multi-index $(2^{k-1}, 2^{k-2}, \dots, 2, 1)$ with m-k zeros inserted somewhere.

Proof. ξ_k is dual to $M_k = Sq^{2^{k-1}}Sq^{2^{k-2}}\dots Sq^1$ and it is easy to check that M_k does not appear in the admissible expression of any other monomial in $\mathscr A$. Therefore $\langle \xi_k, Sq^I \rangle = 1$ if and only if $Sq^I = M_k$, i.e., if and only if I is of the form (3.4).

Proposition 3.5.

$$\omega_m(\xi_k) = Q_{m,0}^{-1} Q_{m,k} \in \Gamma_m \subseteq \Delta_m \quad \forall \ m \ge 1.$$

Proof. See [2, Proposition 1, p. 39].

In other words, $Q_{m,0}^{-1}Q_{m,k}$ is the sum of all monomials v^{-I} with I of the form (3.4). From Propositions 3.2, 3.3, and 3.5 we deduce the following statement.

Corollary 3.6.

$$\omega_m(\xi^R) = Q_{m,0}^{-r_1...-r_k} Q_{m,1}^{r_1} \dots Q_{m,k}^{r_k} \qquad (R = (r_1, \dots, r_k)).$$

In [3] Múi defines a non-normalized version of S_m , which he calls F_m . By non-normalized we mean that F_m does not preserve the degrees; in fact, if $x \in H^n(X)$, the degree of $F_m(x)$ is $2^m \cdot n$ while $S_m(x)$ has degree n. Múi proves the following result [3, p. 346].

Theorem 3.7.

$$F_m(x) = \sum_{R} Q_{m,0}^{n-r_1...-r_k} Q_{m,1}^{r_1} \dots Q_{m,k}^{r_k} \otimes \xi_*^R(x)$$

$$(R = (r_1, \dots, r_k), r_i \ge 0, x \in H^n(X)).$$

Corollary 3.6 allows us to give a very simple alternative proof of a normalized version of Theorem 3.7 above, using S_m instead of F_m .

Theorem 3.8.

$$S_m(x) = \sum_{R} Q_{m,0}^{-r_1...-r_k} Q_{m,1}^{r_1} \dots Q_{m,k}^{r_k} \otimes \xi_*^R(x)$$

$$(R = (r_1, \dots, r_k), r_i \ge 0, k \le m).$$

Proof. We know, from (2.2), that

$$S_m(x) = \sum_I v^{-I} \otimes Sq^I(x) .$$

But the Milnor elements ξ_*^R form a basis for $\mathscr A$, therefore we have an expression of the form

$$S_m(x) = \sum_{R} \alpha(\xi^R) \otimes \xi_*^R(x)$$

where the $\alpha(\xi^R)$'s are suitable elements of $\Gamma_m\subset \Delta_m$. More precisely, for each R, $\alpha(\xi^R)$ is the sum of all the monomials v^{-I} with I such that $\xi_R(Sq^I)=1$, i.e.,

$$\begin{split} \alpha(\xi^R) &= \omega_m(\xi^R) \\ &= Q_{m,0}^{-r_1,\dots-r_k} Q_{m,1}^{r_1} \dots Q_{m,k}^{r_k} \quad \text{(by Corollary 3.6)} \ . \end{split}$$

ACKNOWLEDGMENT

Most of the results presented in this paper have been obtained while I was a Ph. D. student at the University of Warwick and are extracted from my thesis (see [2]). I would like to express my gratitude to my supervisor J. D. S. Jones for introducing me to the subject and for his help and guidance during my stay in Warwick.

REFERENCES

- J. F. Adams, J. H. Gunawardena, and H. Miller, The Segal conjecture for elementary abelian p-groups, Topology 24 (1985), 435-460.
- L. Lomonaco, Invariant theory and the total squaring operation, Ph. D. Thesis, University of Warwick, UK, 1986.
- 3. H. Múi, Dickson invariants and the Milnor basis of the Steenrod algebra, Topology and applications, Colloq. Math. Soc. János Bolyai 41 (1983), 345-355.
- I. Madsen and R. J. Milgram, The classifying spaces for surgery and cobordism of manifolds, Ann. of Math. Stud., no. 92, Princeton Univ. Press, Princeton, NJ, 1979.
- W. Singer, Invariant theory and the Lambda algebra, Trans. Amer. Math. Soc. 280 (1981), 673-693.
- N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. Stud., no. 50 Princeton Univ. Press, Princeton, NJ, 1962.
- 7. C. Wilkerson, Classifying spaces, Steenrod operations and algebraic closure, Topology 16 (1977), 227-237.

DIPARTIMENTO DI MATEMATICA E APPLICAZIONI, UNIVERSITÀ DI NAPOLI, NAPOLI, ITALY