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POLYDISCS AND NONTANGENTIAL LIMITS

KOHUR GOWRISANKARAN

(Communicated by Clifford J. Earle, Jr.)

Abstract. A well-known result states that for all bounded «-harmonic func-

tions on the polydisc D" the nontangential limits exist for (Lebesgue) almost

every element of the «-torus. In this paper it is shown that a similar result is

not in general valid for bounded quotients of two positive «-harmonic func-

tions. Necessary and sufficient conditions on a «-harmonic function u > 0 are

given to ensure the existence "almost everywhere" of the nontangential limits

of the quotients w/u in the case (i) for all «-harmonic functions w suchthat

w/u is bounded and in the case (ii) for all «-harmonic functions w that are

' «-quasi-bounded.'

Let D" be the «-dimensional polydisc and w an «-harmonic function on

D" , i.e., a continuous real-valued function that is harmonic separately in each

variable. The following is a well-known result concerning a class of those func-

tions [8]. Suppose w is «-harmonic and bounded on D" ; then for Lebesgue

almost every ief as z_= (z\, ... , zn) tends to l= (tx, ... , t„) where each

Zj -* tj nontangentially (and to stress the condition independent of the other

variables) w(z) converges to a real number. In terms of potential theoretical

expectations it is natural to expect the result to extend to bounded quotients

of positive «-harmonic functions. More precisely, suppose u > 0 is an «-

harmonic function on D" that is represented as the integral of a finite Borel

measure pu on T" relative to the product of the Poisson kernels [4, 8]. Let

w be any w-bounded (i.e., \w/u\ bounded) «-harmonic function on D" . It is

natural to expect the nontangential limits of w/u to exist for pu almost every

element of T" .
The first main result of this paper will prove this expectation to be false. We

give further a necessary and sufficient condition on u under which the result

is valid for all w-bounded «-harmonic functions. With a slightly different per-

spective it is natural to ask if the nontangential limits exist almost everywhere

on T" for quasi-bounded «-harmonic functions. We consider the problem in

the general situation of «-quasi-bounded «-harmonic functions. We recall that

a positive «-harmonic function is said to be u-quasi-bounded if it is the limit
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of an increasing sequence of positive «-bounded functions. We give necessary

and sufficient conditions on u to ensure the existence of nontangential limits

of w/u at pu almost every element of T" and for all «-quasi-bounded «-

harmonic functions w . One of the principal tools used in our proofs is the ex-

istence of iterated fine limits of quotients of «-harmonic functions [7]. Another

development, which is probably of independent interest, is the introduction of

a restructured PWB (for Perron-Wiener-Brelot) problem in our situation. We

want to thank the referee for some valuable comments and, in particular, for

the much simpler proof of Theorem 2.

In what follows we assume that u > 0 is a «-harmonic function on D" and

is represented uniquely by the finite Borel measure pu on T" relative to the

product of the Poisson kernels.

We now have

Lemma 1. Let w > 0 be a n-harmonic function represented by the finite Borel

measure vw on T" . Then the iterated nontangential limits of w / u exist for pu

almost every element of T" . The limit function (determined up to a set of pu

measure zero) is a Radon-Nikodym derivative of the absolutely continuous part

of vw relative to pu.

Proof. We know that the iterated fine limits of w/u exist pu almost everywhere

and the limit function is the required Radon-Nikodym derivative [7]. However,

by [1, Theorem 4], we conclude that at every stage the existence of the fine

limit implies that of the nontangential limit, equal to the fine limit. Thus the

iterated nontangential limit of w/u exists pu almost everywhere and verifies

the required condition. The proof is complete.

Corollary A. // in addition w is u-quasi-bounded then g dpu represents the

function w where g is the iterated limit function.

Proof. It is simple to verify that w > 0 is «-quasi-bounded if and only if the

measure vw on T" representing w is absolutely continuous relative to pu.

The corollary is then easily seen to be true.

The following corollary is an immediate consequence.

Corollary B. Suppose w is as in the above corollary and assume, in addition,

that the nontangential limit of w/u exists for pu almost every element of T" .

Then the nontangential limit function g is such that g dpu is the representing

measure of w.

Definition. Suppose / is an extended real-valued function on W . For the

element t_ = (tx, ... , tn) e T" , we refer to nontangential lim sup/(z) as z —

(z\-,.. ;'■, z„) -* i as the extended real number a that is the supremum of the

limit values of f(z) when z —> t_ nontangentially as explained at the beginning.

It is easily verified that a is also the supremum as 0 —> n/2 of the lim sup/(z)

as z —> l and z stays in the product of Stolz domains of semivertical angles

(ex,...,en) = e [i].

Theorem 2. There exist  n-harmonic functions  u  and w   both  > 0,   w/u

bounded such that the nontangential limit of w/u does not exist for a set of

elements of T" , of positive (> 0)pu measure, where pu is the canonical (finite

Borel) measure on T" representing u.
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Proof. We recall that there exists an «-harmonic function w > 0 such that the

nontangential lim inf u; = 0 and nontangential lim sup to = +00 for (Lebesgue)

almost every element of T" [2, 5]. Let u = w + 1 where w is the function

as above. Then u > 0 is «-harmonic on D" and w is «-bounded. Fur-

ther we note that the canonical measure pu is such that pu > the Lebesgue

measure on T" . Clearly, the nontangential liminf w/u = 0 and nontangential

lim sup w/« = 1 for (Lebesgue) almost every element of T" . In particular, the

same holds for a subset of T" with /¿„-measure > 0. This proves the theorem.

Theorem 3. Let u > 0 be a n-harmonic function with the representing measure

pu . For every Borel subset E c T" , let Ue be the n-harmonic function with

representing measure xe dpu ■ The following two conditions are equivalent.

(1) For every u-bounded n-harmonic function w, the nontangential limit of

w/u exists for pu almost every element of T" .
(2) For every Borel set £cf, the nontangential limit of ue/u equals zero

for pu almost every element in T" \E.

Proof. Suppose that the condition ( 1 ) is verified for «. Then by the corollary

B, the nontangential limit of Ue\u equals xe , Pu almost everywhere on T".

Conversely, suppose that condition (2) is verified for «. Let E be an arbi-

trary Borel set. Since (2) is valid both for E and T"\E, we conclude easily that

the nontangential limit of ue/u equals xe , Pu almost everywhere. Suppose /

is any bounded Borel function on T" and o(f) the «-harmonic function that

is the integral of the product of Poisson kernels relative to the signed measure

fdp. Every «-bounded «-harmonic function is necessarily of this form. Sim-

ple measure theoretic arguments let us conclude that the nontangential limit of

o(f)/u exists Pu almost everywhere on T". Then we conclude by Corollary B

that the above limit equals /, pu almost everywhere. The proof is complete.

Let us now prove the following restricted version of a minimum principle for

«-harmonic functions.

Theorem 4. Let w be a n-harmonic function on D* such that w/u > -a for

some positive number a. Let further the nontangential lim inf of w/u be > 0

for Pu almost every element of T" . Then w > 0.

Proof. The positive «-harmonic function w + au can be uniquely expressed

as the sum wx + w2 of positive «-harmonic functions where the representing

measure of wx (resp. w2) is absolutely continuous (resp. singular) relative to

Pu. From the hypothesis of the theorem and Lemma 1 we know the iterated

(fine as well as) nontangential limit of (w/u + a) exists and majorizes a, pu

almost everywhere. We further conclude that wx > au.

Hence, w + au — (w{ - au) + au + w2 where each term on the right is a

positive «-harmonic function. Hence w > 0 completing the proof.

We now proceed to consider the nontangential behavior of «-quasi-bounded

«-harmonic functions. Let us assume that the positive «-harmonic function u

verifies either of the equivalent hypothesis stated in Theorem 3. Let us have the

convention that Inf <p = 00. For an extended real-valued function / defined
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on T" we define the following lower envelope:

{w   «-harmonic and «-quasi-bounded,

w :   w/u lower bounded on D" ,

« - t.liminfw/u > f, pu a.e. on T".

Modifying the envelope introduced by Doob [3] we define for all / > 0 on T"

{w > 0,  «-harmonic on D" ,

w :   w is w-quasi-bounded,

« - t.limsupw/u > f, pu a.e. on T".

Theorem 5.  So(f) is identically ±oo or it is a n-harmonic function on D".

Proof. We may assume that So(f) 4 +oo . Suppose Wx and w2 are two of the

functions in the class defining So(f). Define for each positive integer m ,

hm = greatest «-harmonic minorant of min(wx, w2,  mu)

[A]. Clearly hm exists and is «-bounded and hence the nontangential limit of

hm/u exists Pu almost everywhere.

Now, vm = min(wx, w2 , mu) — hm is a nonnegative «-superharmonic func-

tion with greatest «-harmonic minorant zero. Further the iterated nontangen-

tial as well as iterated fine limit of vm/u exists pu a.e. and is hence = 0,

Pu a.e. It follows therefore that « - t. lim inf vm/u = 0, pu a.e. Hence, the

« - î.liminfmin ¿(toi , w2, mu) = « - t.lim hm/u, pu a.e. This implies

that the « - t.limhm/u is > min(/, m), pu a.e. Clearly the sequence of «-

harmonic functions hm increases and by Harnack property [4] converges to a

«-harmonic function h as m tends to oo and h < min^ , w2). Let now «'

be the greatest «-harmonic minorant of min(wx, w2). Clearly, h'/u is lower

bounded and further

« - t. lim inf h'/u > « - f. lim inf h/u > min(/,  m)

pu a.e. for each m . We conclude that h! > So(f). Now it is easy that So(f)
may be realized as the limit of a decreasing directed family of «-harmonic

functions and is hence, by Harnack property, necessarily -oo identically or a

«-harmonic function on D" . The proof is complete.

Lemma 6.  So(f) introduced above satisfies the following properties.

(a) So(f) increases with increasing f.

(b) Suppose fn]f, f>0 then S0(f„) Î S0(f).
(c) S0(f) > -So(-f).

Proof. The first property is trivial and the third one is an immediate conse-

quence of Theorem 4. The proof of (b) follows the familiar pattern. Sup-

pose f„>0 and increases to /. We need to consider the only case when

lim5'o(/n) 4" +00 for each «. Fix z e D" and e > 0. Choose for each «,

a «-quasi-bounded «-harmonic function wn > 0, wn in the defining fam-

ily of So(fn) such that So(f„)(z_) + e/2" > wn(z). It is simple to verify that

for each «, So(fn) is «-quasi-bounded. Clearly the limit v of (the increas-

ing sequence) So(fn) is «-harmonic and also «-quasi-bounded. Let us now

set w = v + J2^° [wn - S0(fn)] ■   Clearly, w  is a positive «-quasi-bounded
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«-harmonic function such that nontangential lim inf w/u > f, pu a.e. Hence

w > So(f). It follows that So(f)(z_) < v(z_) + e . The proof is completed easily.

Theorem 7. For all Borel functions f > 0

So(f) = o(f) = j fFdpu,

where P is the product of the Poisson kernels.

Proof. Consider first a Borel function / such that 0 < / < M for some

M. a(f) > 0 and besides by our hypothesis, o(f)/u has nontangential limits

equal to /, pu a.e. and hence o(f) > So(f). However, it is easy to check that

-o(f) > So(-f) or o(f) < -So(-f) < S0(f). Hence, o(f) = S0(f) in this
case. In general, if / > 0 and Borel, set /„ = min(/, «). Then, the above

lemma and monotone convergence theorem gives us

o(f) = lim o(fn) = HmSo(fn) = So(f).

The proof is complete.

Now we introduce a stronger condition to ensure the existence of nontangen-

tial limits for w-quasi-bounded functions.

Let / > 0 be Borel and pu integrable on T" . Then the non-

(H)       tangential limit of o(f)/u exists and equals zero for pu almost

every t_eNf = {t_: f(t) = 0}.

It is easy to deduce the hypothesis (2) of Theorem 3 in case u satisfies the

above condition (H); hence it is stronger than the requirement of the existence

of limits for «-bounded functions.

Theorem 8. Suppose the n-harmonic function u > 0 satisfies the condition (H)

above. Then for all pu integrable function />0 on T", So(f) = Sx(f).

Proof. It is clear that So(f) > Sx (f). We want to prove the opposite inequality.

As before, let us first assume that f is in addition bounded. Let w be >

0, «-harmonic and «-quasi-bounded and verify nontangential lim sup w/u>

f, pu a.e. Suppose w = o(g) for some g > 0 and Borel and let v =

min(o(g), o(f)). Since the nontangential lim o(f)/u = /, pu a.e., we have

that the nontangential limsup v/u> f, pu a.e.

Now, it is easy to verify that cr(min(/, g)) = « is the greatest «-harmonic

minorant of v . Further,

v - h = min[o(g - min(f,  g)),  o(f-min(f,  g))].

Let Ex = {t_ e T" : g(t_) > f(t)} and E2 the complement of Ex . Clearly,
for all i e Ex , min(f(¡), g(f)) = f(f) and hence, nontangential lim«/w =

min(f(t_), g(t)) = f(f) except on a set of pu measure zero. However, for

Pu almost every l e E2 that is the set where the pu integrable nonnega-

tive function g - min(/, g) takes the value 0, and (by the condition H),

^o[g - min(/, g)]-»0. Hence, the nontangential limit (v - h)/u = 0, pu

a.e. on E2. In particular, we conclude that at all those /, the nontangential

limit of h/u equals /, pu a.e. Since « = cr(min(/, g)) and is «-bounded,

we deduce that min(/, g) = f, pu a.e., i.e., o(g) > o(f).
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This is true for all w = o(g) in the defining class of Sx (f), and we conclude

that Sx(f) > o(f) = So(f). The required result is therefore proved for / > 0

bounded and Borel on T" . In general, for any / > 0 Borel and /¿„-integrable,

let /„ = min(/,  «), for all n . Then,

Sx(f) > Sx(fn) = S0(fn) / S0(f) > Sx(f).

The proof is complete.

We include the following result for the sake of completeness.

Theorem 9. Let /: D" —> R be a continuous function. Let f(V) = nontangential

lim sup/(z) as z,—*t, for all t e T" . Then, f is a Borel function.

Proof. Let 6 be a fixed number 0 < 6 < n/2. Let Re,s(D be the nontangential

domain in D" with vertex t, which is the product of the Stolz domains S¡(Q, S)

with vertex t¡, of semivertical angle 6 and cut off by a circle of radius ô

centered at tj. Let m be a sufficiently large number so that the closed polydisc

D¡J, of radius 1 - ;j¡ has nonvoid intersection with Re,s . From the fact that /

is uniformly continuous on 'Dnm we deduce easily that gm defined by gm(t) =

sup/(z) for z e Re,s(L) n D^, is (uniformly) continuous on T" . It is clear

that if ¿e(L) = lim^otlimm^oogm(f)] then ie(t) = limsup/(z) as z -► t_

and z staying in the product of Stolz domain of angle 6. Hence, ie is a

Borel function; in fact, with very minimal restrictions the limit of a decreasing

sequence of lower semicontinuous functions on T" . As we have remarked

earlier the nontangential lim sup of / is the increasing limit of the functions

le as 6 î n/2 . The theorem is proved.

Theorem 10. Let u > 0 be an n-harmonic function on D" that verifies the

condition (H). Let w be the integral of the product of Poisson kernels relative to

the (signed) measure f dpu where f is a pu-integrable Borel function on T".

Then the nontangential limit of w/u exists pu a.e. and equals f.

Proof. Clearly, it is enough to prove the result for / > 0. Let / be the

nontangential lim sup function associated to a(f)/u. By the last theorem, /

is a Borel function and we know that f > n - ¿Tim inf cr(/)/w > /, pu a.e.

However, by Theorems 8 and 7

o(f)>Sx(f) = So(f) = o(f)>o(f).

This clearly implies that f — f, pu a.e. The proof is complete.

Theorem 11. Let Uj, j = 1,2 be a positive n-harmonic function on D" with

the canonical representing Borel measure pj on T" such that the condition (H)

is verified by Uj. Then the following are results concerning the corresponding

properties of (ux + u2).

(a) Every («i + u2)-bounded n-harmonic function D" has a nontangential

limit for (px+p2) almost every element ofTn iff the nontangential limit of Uj/u^

exists as a real number for pk almost every element of T", for j, k = 1,2.

(b) Let uj be the singular part of the measure Pj relative to pk . Then («i +

u2) satisfies the property (H) iff for all positive (px+p2)-integrable Borel functions

f, (J ffdvj)/uk has nontangential limit 0 for pk almost every element of T"

for j =1,2 and k 4 j.
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Proof, (a) Let gj be the Radon-Nikodym derivative of the absolutely continu-

ous part of pj relative to pk . Then, dpj — gjdpk + dvj. Assume that u¡/uk

has the required property. Let E be any Borel set. Then

(«i + u2)E _, J_

ux + u2        uk
(uk)E + j gjFdpk + Jfdvj 1 + ^

uk

where P is the product of the Poisson kernels. For k 4 j, 0 < JE Fdvj/uk <

¡Ydvj/uk tends to zero pk-a.e. and the function gj being clearly Borel and pk-

integrable we conclude that the above quotient has a nontangential limit equal

to zero pk almost everywhere in the complement of E. This being true for

k = 1, 2 we conclude that the condition of Theorem 3 is fulfilled for (ux + u2).

Conversely, the assumption on (ux+u2) clearly implies that uj/(Uj + uk) has

nontangential limit (px+Pi) almost everywhere for j: — 1, 2 . This establishes

in particular that uk/uj has nontangential limit (including possibly +00) (px +

p2) almost everywhere. Using the fact that this limit is indeed the iterated

nontangential limit we conclude by the Lemma 1 that the nontangential limit

(function) of uk/Uj is the equal to gk (pj almost everywhere).

Let us now prove (b). Let gj, v¡ be as above. Suppose (ux + u2) satisfies

(H) and / > 0 and belongs to Lx(px + p2). Let F¡ be a Borel set carrying the
We have,

Mim^-¿ = «-Mim(/  fP(dpx+dp2)\—,        pk a.e.,
Uk \Jf, / uk

since Pk(Fj) = 0 and Pj/Fj = v}. Clearly, by dividing the numerator and

denominator of the above quotient by (ux + u2) and taking the limit, we get

that this nontangential limit function equals (fxFj)(l + gj) ■ Hence it is zero

pk almost everywhere. This is true for k — 1,2.

Conversely, suppose ux and u2 verify all the listed conditions and / be in

Lx(px + p2) and / > 0. We have

r{f) = J fP(dpx+dp2) = J fPdpk + J fFgjdpk + JfYdvj.

We can express t(/)/(«i + u2) as (T(f)/uk)(uk/ux + u2) and consider the

nontangential limits of x(f)/uk. It is trivial to see that nontangential limit

of Uj/uk exists pk almost everywhere for j, k — 1,2. Clearly, the first two

terms in the sum tend respectively to / and fg¡, pk almost everywhere. The

last term tends to zero pk almost everywhere by our hypothesis. In particular,

t(f)/(ux+u2) tends to zero at all points where f — 0, pk almost everywhere.

This is true for k — 1,2. Thus we have shown that («i + u2) satisfies the

property (H). The proof is complete.
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