A CHARACTERIZATION OF THE SPHERE IN TERMS OF SINGLE-LAYER POTENTIALS

HENRIK SHAHGHOLIAN

(Communicated by J. Marshall Ash)

ABSTRACT. Let Ω be a bounded smooth domain in \mathbb{R}^n , and suppose the single-layer potential of $\partial\Omega$ coincides for $y\notin\overline{\Omega}$ with the function $c|y|^{-1}$ (c>0). Then $\partial\Omega$ is a sphere centered at the origin.

Throughout this paper we assume $\Omega \subset \mathbb{R}^3$ (the case \mathbb{R}^n is similar) is a bounded domain, and the boundary $\partial \Omega$ is smooth enough that for

(1)
$$u(y) = \int_{\partial \Omega} \frac{d\sigma_x}{|x - y|} \qquad \forall y \in \mathbb{R}^n,$$

one has

(2)
$$4\pi = \frac{\partial u}{\partial n^{-}} - \frac{\partial u}{\partial n^{+}} \quad \text{on } \partial\Omega,$$

where $d\sigma_x$ denotes the surface measure, + indicates the limit from the exterior and - the limit from the interior (see [K, p. 164]), and n is the outward normal vector to $\partial \Omega$, which we assume to exist. If Ω has this property, then we say Ω is smooth.

Theorem. Let Ω be a bounded smooth domain in \mathbb{R}^3 , and suppose for some c > 0

(3)
$$\int_{\partial\Omega} \frac{d\sigma_x}{|x-y|} = \frac{c}{|y|} \qquad \forall y \neq \overline{\Omega}.$$

Then, $\partial \Omega$ is a sphere centered at the origin.

Proof. Since the single-layer potential is continuous in \mathbb{R}^3 (see [K, p. 160]) (3) implies $0 \in \Omega$. Therefore we can take two balls B_1 , B_2 both centered at the origin, such that B_1 is the largest ball in Ω and B_2 is the smallest ball containing Ω . Now the idea is to show that $\partial B_1 = \partial B_2 = \partial \Omega$. Now let $y^1 \in \partial B_1 \cap \partial \Omega$ and $y^2 \in \partial B_2 \cap \partial \Omega$, then $|y^2| \geq |y^1|$. Thus it suffices to prove $|y^2| \leq |y^1|$. Define u to be the function represented by (1). Then by the maximum principle (since u is harmonic in Ω) max u in Ω is attained on

Received by the editors January 7, 1991.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 31B20.

Key words and phrases. Single-layer potential, harmonic function, mean value property.

 $\partial \Omega$, hence by (3) at y^1 . Similarly, min u in Ω is attained at y^2 ; therefore,

$$\frac{\partial u}{\partial n^{-}}(y^{1}) \ge 0$$
 and $\frac{\partial u}{\partial n^{-}}(y^{2}) \le 0$.

Moreover, at v^1 and v^2 we have

$$\frac{\partial}{\partial n^+} = \frac{\partial}{\partial |y|},$$

which applied to (2) yields

$$4\pi = \frac{\partial u}{\partial n^{-}} - \frac{\partial u}{\partial n^{+}} = \frac{\partial u}{\partial n^{-}} - c \frac{\partial |y|^{-1}}{\partial |y|} \ge \frac{c}{|y|^{2}} \quad \text{at } y^{1},$$

i.e., $|y^1| \ge \sqrt{c/4\pi}$. Similarly

$$4\pi = \frac{\partial u}{\partial n^{-}} - \frac{\partial u}{\partial n^{+}} = \frac{\partial u}{\partial n^{-}} - c \frac{\partial |y|^{-1}}{\partial |y|} \le \frac{c}{|y|^{2}} \quad \text{at } y^{2},$$

i.e., $|y^2| \leq \sqrt{c/4\pi}$. This completes the proof.

Remark. As far as the proof of the theorem goes, we do not need equation (2) to hold on the entire boundary of Ω , but just at the points on $\partial \Omega$ where u attains its maximum and minimum.

The theorem can very easily be generalized to the case in which Ω is a union of disjoint domains or in which the density is assumed to be radially increasing. These generalizations, in the context of the *volume* potential, are dealt with in [ASZ].

We state these as corollaries, omitting the simple proofs.

Corollary 1. Let

$$\int_{\Omega} \frac{d\sigma_x}{|x-y|} = \sum_{j=1}^m \frac{c_j}{|x^j-y|} \qquad \forall \ y \notin \overline{\Omega},$$

where $\Omega = \bigcup_1^m \Omega_j$, $\{\Omega_j\}$ are pairwise disjoint smooth domains, and $x^j \in \Omega_j$. Then, $\partial \Omega_j$ is a sphere centered at x^j , \forall_j .

Corollary 2. Let f = f(|x|) be a continuous increasing function defined on \mathbb{R}^3 , and suppose

$$\int_{\partial\Omega} \frac{f(|x|)d\sigma_x}{|x-y|} = \frac{c}{|y|} \qquad \forall y \notin \overline{\Omega}.$$

Then $\partial \Omega$ is a sphere centered at the origin.

REFERENCES

- [ASZ] D. Aharonov, M. M. Schiffer, and L. Zalcman, Potato Kugel, Israel J. Math. 40 (1981), 331-339.
- [K] O. D. Kellogg, Foundations of potential theory, 4th printing, Ungar, New York, 1970.

Department of Mathematics, Royal Institute of Technology, S-100 44 Stockholm 70, Sweden