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NONLINEAR />LAPLACIAN PROBLEMS ON UNBOUNDED DOMAINS

LAO SEN YU

(Communicated by Barbara L. Keyfitz)

Abstract. We consider the p-Laplacian problem

- div(a(x)|S7u\p-2Vu) + b(x)\u\p-2u = f(x, u),

XGÍ2,  h|öq = 0,     lim   u = 0,
|*|-» oo

where 1 < p < n , Q (C R") is an exterior domain. Under certain conditions,

we show the existence of solutions for this problem via critical point theory.

1. Introduction

This paper is devoted to the study of the p-Laplacian problems

lu = f(x, u)   in Q,

(*) u\ac¡ = 0, lim  m = 0,
|x|—too

where £1 is a smooth exterior domain in 7?" (i.e., il is the complement of a

bounded domain with Cx'6 boundary, 0 < ô < 1), lu = - div(a(x)\Vu\p~2Vu)

+ b(x)\u\P~2u, 1 < p < n, 0 < a0 < a(x) e L°°(Çi) n Câ(U), 0 < b(x) e
L°°(Q) n C(Q). The objective is to obtain sufficient conditions on / for (*)
to have positive solutions in the following three prototype cases:

' g(x)ua, p-l<a<p*-l;

<   h(x)uP , 0< ß <p - 1;

k g(x)ua + h(x)uß ,       0<ß<p-l<a<p*-l,

where p* = np/(n -p) is the Sobolev critical exponent. When p = 2, (*) is
the usual second order elliptic problem, and (1), (2), and (3) correspond to the

superlinear, sublinear, and mixed sub-superlinear cases respectively.

Several studies have appeared. For the case of bounded domains, we mention

the works of Azorero and Alonso [2], Egnell [5], Guedda and Veron [6], and

references therein. As to unbounded domains, we recall the results of Bidaut-

Veron [4], Li and Yan [8], and Ni and Serrin [11]. Ni and Serrin [11] studied

the radial case divdVw^-2«) + ua = 0 in 7?" and showed that this equation
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admits no positive radial ground state solutions if0<a<p*-l and, con-

versely, it does admit one if a > p* - 1. Li and Yan [8] considered the eigen-

value problem div(|Vw|i'~2VM) 4- f(x, u, k) = 0, x e R" , with f(x, u, k) =

g(x, u) -k\u\p~2u or k(g(x, u) - \u\p~2u), assuming lim,_*o g(x, t)/tp~x = 0,
and obtained a decaying solution for k — ko. Bidaut-Veron [4] studied the

behaviour of solutions of (*).
No existence theory seems to have been found to date for nonradially sym-

metric p-Laplacian problems of type (*) in the cases (1), (2), and (3). As the

problem (*) has a variational structure, we naturally apply critical point theory

to it. We first set up some weighted spaces in which the solutions are to be

sought and for which the norm ||w||/ = (¡na(x)\Vu\p + b(x)\u\p)x/p induced by

the operator / is an equivalent norm. Then we employ Mountain Pass argu-

ments to obtain the existence of solutions. To prove the decay of the solutions,

we make use of the estimates of Serrin [13].

2. Problem (*) in case (1)

In this section, we consider problem (*) in the case (1); that is, / is of the

form g(x)ta with p - 1 < a < p* - 1 . We choose the function space E as

the completion of Co°(i2) under the norm ||u|| = (¡n \Vu\p + œ\u\p)xlp , where

co(x) = max{è(x), 1/(1 + |-x|)p}. From the definition, it is clear that E ~

Wq'"(Q) if b(x) > bo > 0. Moreover, E has the following three important

properties:

(a) E can be embedded into W^¿p(Cl) ;

(b) Sobolev Inequality:    \\u\\p-  < A\\Vu\\p  for all  u e E, where p* =

np/(n-p) and

n - 1 Y(n/p- 1)

~ nvln/n    T(n/p)    '

the Sobolev embedding constant (see [10, p. 56]), and v„ = vol(2?i(0)) ;

(c) The norm ||u||/ = (Jaa\Vu\p + b\u\p)x/p induced by the operator / is

an equivalent norm on E .

Indeed, (a) and (b) are obvious, while (c) follows from a Hardy-type inequal-

ity

/„(TtW"""^/^"1
for all <p e Cq° (Q). This inequality can be obtained by applying the Divergence

Theorem and Holder inequality to the integral

L(ü^lul'=-Ux-dwTMrw')

^»/„((TT^K'O'^^i/aö+W1"1''
We assume that / satisfies the following conditions:

(i)   / e C°(Q x R+), f(x, t) > 0 in Q0 x (0, oc) for some nonempty

open Qq ç Q ;
(ii)   \f(x ,t)\< g(x)\t\a , p - 1 < a < p* - 1 , (0 4)g e L°° n LP°(Q) where

n   _ _n¿_.
^° — np-(a+\)(n-p) '

r i /•
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(iii) there exists p > p such that pF(x, t) < tf(x, t), (x, t) e Q x R+ ,

where F(x, t) = J0' f(x, s)ds .

Now we define two functionals K(u) and J(u) on E,

(4) K(u)= [ F(x,u)dx,        J(u) = -\\u\\p-K(u).
Jn P

K(u) and J(u) axe well defined by assumption (ii) and Sobolev's Inequality.

The functional K(u) has the following basic properties.

Lemma 1. Under (i), (ii),

(a) K(u)   is weakly lower semicontinuous and differentiable on  E  with

K'(u)(q>) = /n/(«, x)<pdx for cp e E.
(b) K'(u) is a continuous and compact map from E to E*, the dual of E.

Proof. We select Qk - {x e Cl\ \x\ < rk}, where rk could be a fixed number or

a sequence.

(a) Let Uj -> u weakly in E. Observe that

\K(uj) - K(u)\ < [   \F(x,Uj)-F(x,u

(5)

)l

+ C\\g\\LPOin\nk)(\\Uj\\</+x + \\u\\'/+ >).

Since {uj} is bounded in E, {Uj\ak} is bounded in Wx'p(Q.k) for fixed k.

It follows from the compact embedding Wx>p(Q.k) ̂ -> L9(dlk) for 1 < q < p*

(see, e.g., [1, Theorem 6.2]), that there exists a subsequence of {u,} that con-

verges to u in Lq(Q.k), whence Uj —► u in Lq(i~lk). Further, ¡n F(x, uk) -*

Jn¡ F(x, u), since \F(x, t)\ < ^xg(x)\t\a+x and 1 < a + 1 < p*. Therefore,

K(Uj) -> K(u), since (5) and g e L»°(Q).
For differentiability of K, we show that given any e > 0, there exists a

ô - S(e, u) > 0 such that

/ F(x, u + tp) - I F(x,u)- ¡ f(x,u
Ja Jq Ja

)<P<e\m\i

for all <p e E with \\<p\\¡ < a . Observe that g e 7/°(Q) and

/       F(x, u + cp) - F(x, u) - f(x, u)(p
Ja\ak

<[      g{{\u\ + \9\)a\<p\ + \u\a\q>\]

<C\\g\\Lr0{rl\nk)(\\u\\r + \\<p\\r)\\<p\\l<^\\<P\\l

for sufficiently large rk and \\<p\\i < 1. To estimate the integral on the bounded

domain Qk and obtain

/
F(x, u + tp) - F(x, u) - f(x, u)tp <2^H/'

we need only follow the arguments in Proposition BIO of [12].
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(b) The continuity of K'(u) follows from the estimate

\\K'(Uj)-K'(u)\\E. <C{\\f(-,Uj)-f(-,u)\\Lnpl{^){ilk)

+ \\g\\w{çl\çlk)(\\uJ\\? + \\u\\</)},

1 < anp/(n + p) < p*, and arguments similar to the one above. To show

the compactness, we employ the diagonal method. Let {uj} be a bounded

sequence in E, and let rk —► oo such that llgHí/funva*) < ¿, For each k,

the compactness of the embedding Wx'p(Qk) '-» Lq(Qk)(l < q < p*) and

the boundedness of {uj} in Wx'p(Qk) imply that {uj} has a Cauchy sub-

sequence {Ujk} in Lq(Çlk). Then {7C(m¿,)} is a Cauchy sequence in E*.

Indeed, for given e > 0, choose k such that ||^||LPo(fi\nt) < e. On the

other hand, {uj¡} (c {uJk}) is convergent in Lq(Qk) (1 < q < p*), and

|/(x, í)|"íV(«+í>) < cjí|a""/("+/') with 1 < anp/(n+p) < p*, whence for ;, k

sufficiently large, ||/(-, u¡¡) - /(•, un)\xL«pn^p)(çik) < E ■ The compactness of K'

follows immediately from (6) by replacing u¡ with u¡¡ and u with «„ .

The critical points u of J, i.e.,

(7)       J'(u)(<p) = [ (a\Vu\p-2Vu ■ Vtp + b\u\p-2u(p - f(x, u)<p) dx = 0
Ja

for all (p e E axe weak solutions of lu — f(x, u).

Lemma 2. Let u be a critical point of J.

(a) u e Lq(Çi),   JUL < q < oo.   If b(x) > b0 > 0, then u e Lq(il),
p < q < oo,

(b) lim|xHoo w = 0.

Proof, (a) Let u+(x) = max{u(x), 0}, u~(x) = max{-u(x), 0}. We show

that statement (a) is true for «* . Set uk(x) — min{«±(x), k}, k — 1, 2, • - • .

For any real  i > I,  (uk)' e E.   Substituting q> = (uk)'  in (7) and using

-Iloioo|r|a < f(x, t) < UWooW , we obtain

i I (uky-x\vuk\p < ^^ [ (uú
Ja ao   Ja

±\a+;

By the fact that (uky-x\Vuk\p = (JTphx)p\V(ukyi+p-xVp\p and Sobolev's In-

equality, we have

n-

(8) {Liuk)T^p{'+p~l)) " -cL{u±)a+i>

where C = C(n, i, p, a, a0, ||g||oo)- Setting

a = p* - 1 - a,        i = Íq = 1 + o ,

io = -^(10+p_1) = _i-„+(7).

and letting k —► oo in (8), we conclude that m* e L9o(íí). Iterating this process
gives

(\\uk\U1+l)^<C i(u^,
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where q¡ = -^(i¡ + p - I), ij■■ = 1 + a + ¿£¡0 +-h (-^Vo , and where C =

C(n,ij,p,a,ao, \\g\U), 7 = 0,1,--. Thus, «=•= eLq(Q), ^ < q < œ,
and (a) follows. To show (b), we choose ro sufficiently large so that B2(x) ç Q

for all x such that \x\ > r0.   Then by Theorem 1 of Serrín [13], for some

IMIl»(Bi(x)) < C^uWl,' (Bl{x)) + \\f(X , U)\\L,{B2{X))} ,

where C = C(n, p, q). The decay of u follows.

Now we can employ the Mountain Pass Theorem to obtain a solution of (*).

Theorem 1. Under conditions (i)-(iii), the problem (*) has a positive decaying

solution u e Cx's(QnBr(0)) for any r > 0 and some â = ô(r) e(0, 1).

Proof. Since we seek positive solutions, it is convenient to define f(x, t) — 0

for t < 0. By condition (ii), for small r > 0, there exists a c > 0 such that

j(u)>l-\\u\\p-c\\g\\Po\\u\\rl>c

for u e dBr(0). Integrating and using conditions (i) and (iii), we see that

F(x,t)>axtß- a2 for (x, t) e Q0 x R+ , some ax, a2 > 0. Let q> e C^Qo)

such that <p(x) >0, 4 0, and let s e R+ . For s large,

1 r
J(s<p)<-sp\\(p\\p-s» /   fl,^ + fl2|Q0|<0.

P Ja0

Thus we obtain the existence of e with J(e) < 0. To see that the (PS) condition

holds, suppose {«,} ç Tí is such that J(u¡) < C and J'(u¡)(-) —* 0. Note that

the inequality

C > /(«,) > -||w;||? - - [ f(x, u,)u, >(---) \\UiWl + -J'{Ui)<Ui)
P ß Ja \P     ß/ ß

yields the boundedness of {«,} . Consequently, it follows from the compactness

of K' that there exists a subsequence of {u¡}, say {u¡} itself, such that K'(u,)

is Cauchy in E*. We claim that {«,} is a Cauchy sequence in E. Indeed, we

have the inequality

f (\£\p-2£-\n\»-2n)-(i-n) if/>>2,
(9)      \£ _ yi\P < i - _

l[(iír2í-hr2'7)-(^-'/)]"[i^i/' + i'/n^£ if i < ̂  < 2
for <^, ?/ e 7?" (see, e.g., [7, 14]). On the other hand, from (7) we obtain

/ a(\VUi\p-2Vui - \Vuj\p-2VUj) • (Vw,- - Vm;)
Ja

+ b(\Uj\p~2Uj - \Uj\p'2Uj) ■ (u¡ - uj)

/  (f(x, U¡) - f(x, Uj))(Ui - Uj)
Ja

< \J'(Ui)(Ui - Uj)\ + \J'(Uj)(Ui - Uj)\ +

(10)
< C{||7'(W,)IU- + \\J'(Uj)\\E. + \\K'(Ui) - K'(Uj)\\E.},

where C = C(n, p). From (9) and (10), it follows immediately that {u¡} is

Cauchy in E. Thus the (PS) condition holds. The Mountain Pass Theorem

guarantees the existence of a nontrivial critical point of J , say u. By Lemma

2, u decays. Letting <p = u~ in (7) implies that u > 0 in Q. The positivity

u(x) > 0 in Q, follows from the Harnack type inequality [15, Theorem 1.1].

Finally, the proof of [9, Theorem 1] implies that weC'^ßn^O)), r > 0.
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To see this, let r be so large that ôfi c Br(0). Since «|9rj = 0, the boundary

regularity arguments of [9, Theorem 1] can be applied in a neighborhood of diï

in fin Br(0), while the interior regularity arguments of [9, Theorem 1] can be

applied in the rest part of Q, n Br(0).

3. Other problems

We employ the method of the previous section, with some modifications, to

consider the problem (*) in cases (2) and (3)

,.      .     (h(x)u*, 0<ß<p-l,
f(x, u) = <

I g(x)ua + h(x)u^ ,        0<ß<p-l<a<p*-l.

We introduce the following conditions:

(iv)   0 < f(x,t) < h(x)\t\fi , 0 < ß < p-l, he L°°(£ï) n L*(Q), q0 =
no

np-(ß+l)(n-p) '

(v)  f(x, t) > ho(x)tfo as t -» 0+ , 0<ß0<ß, h0(x) > 0, ^ 0.

Theorem 2. Under conditions (i), (iv), and (iv), problem (*) has a positive de-

caying solution u e Cx'S(Qr\Br(0)) for any r > 0 and some S = ô(r) e (0, 1).

Proof. We assume f(x, t) = f(x, 0) for t < 0 and define the functionals

K(u) and J(u) on E as before. By condition (iv), the functional J is weakly

lower semicontinuous differentiable. Moreover, / is bounded below, since

J(u)>l\\u\\p-C\\h\\qo\\u\\f+l-

Thus J has a critical point u: J(u) = inf{J(v) \ v e E}, which is a solution

of (*). We note that u must be nontrivial since

(11) J(S(p) < S-^\\<p\\p - -f^- / ho(x)\(p\^x < 0
P po+ i Ja

for some rp e Cq°(Q) and small s > 0. The arguments of the nonnegativity,

regularity, and decay of u in Theorem 1 work here. Since lu > 0, the weak

Harnack inequality [15, Theorem 1.2] yields u(x) > 0 in Q.

Theorem 3. Let f(x, t) = f(x, t) + f2(x, t). Suppose that f satisfies (i)-(iii)

and f2 satisfies (i),(iv), and (\). Then the problem (*) has two positive decaying

solutions ux,u2e Cx'â(Q n Br(0)) for any r > 0 and some ô = ô(r) e (0, 1)
provided

2Ap\\g
p-^^ ^tor    i     /(a+!)(;,_/?+i)\^

IPo ll"ll?o La+1  \(ß+l)(a+l-p)

1      f(ß+l)(a+l-p
+

p-ß-J

<1,
ß+l \(a+l)(p-ß-l)

where A = ^mi^lt vH=vol(Bx(Ö)).

Proof. Once again, we employ Mountain Pass arguments to obtain the first

nontrivial critical point of / . Here we assume f(x, t) — f(x ,0) for t < 0.

In this case,

J(u) = -\\u\\p - f K(u),        K(u)=  ( Fx(x, u)+ [ F2(x, u),
P Ja Ja Ja
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where Fx(x, u) = J0U f (x, s)ds, F2(x, u) - ¡0" f2(x, s)ds. J is weakly lower

semicontinuous and differentiable, while K' is compact. Observe that for some

(0 <) (p e C0°°(fi0),

J(s<p) < -sp\\<p\\j -s" [ ax<pu + a2\ii0\ < 0
P Ja

for large s > 0 and that

J(u) = -\\u\\p - ¡ Fx(x,u)- i F2(x,u)
P Ja Ja

+ /  \-Mx> u)u-F2(x, u)\

It follows that any sequence {»,} such that J(u¡) < C and J'(u¡) —> 0 is

bounded. Thus {«,} has a convergent subsequence by the compactness of K'

and J'(Uj) —» 0. The (PS) condition now follows, but the step J(u) > a for

u e dBr(0) no longer follows as before. However,

'HAiuiiMiir1J(u)\Ml=r > (i||«||f - ^A^UxUuWr1 - j^A'*

= -/ (l - -¡LTA°+]\g\\Por"+l-'' - j^A^WhW^-o

= -rpH(r).
P

Elementary differentiation shows that 77(r) has an absolute maximum

\u\\l=r

ro = A
(a+l(p-l-ß)\\h\\<]0

(ß+l)(a+l-p)\\g\\ p»

i
a-ß

By assumption, 77(ro) > 0. Hence 7(w)|||„n/=ro > 0. By the Mountain Pass

Theorem, /(•) has a critical point U\ with J(u\) > 0. Observe J(u)\\\u\\l=rQ > 0

and

cP cP0+l       f

J(s<P) < -\\<P\\P+sa+lC\\g\\P0\\<p\\î+l - -s-TT / ho(x)\<p\»°+l < 0
P Po + l Ja

for some <p e Cq°(Q) and small s > 0. It follows that /(•) attains its local

minimum at some u2 e Bro(Q), i.e., J(u2) = inf{J(v) \ v e Bro(0)} < 0. As

before, we have Ux, u2 > 0. Since ux, u2 satisfy lu > f(x, u), the positivity

of Ux, u2 follows from [15, Theorem 1.2]. A slightly modified proof of Lemma
2 shows the decay of ux, u2 ; in this case the estimate of the proof of Lemma
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2(a) proceeds as follows:  i > I ,

/ f(x, u)u' =  / fx(x, u)ul + I f2(x, u)u¡
Ja Ja Ja

< HslU / ua+' + [       huP+i + [    huP+i
Ja Jo<u<\ J\<u

<(||S||oo + ||A||oo)  Í ua+'+  i hu^x
Ja Ja

<(Woo + l|A||0o)/«a+/ + q|AILII«llf+1.
Ja

The rest is the same. This completes the proof.

Suppose that g(x) = 0(\x\~v), h(x) = 0(\x\~y) at oo . Then conditions (ii)

and (iv) imply that

l_ np - (a + l)(n -p) np - (ß + l)(n -p)

P P

If b(x) > bo > 0, the assumption g e LPo(£i) of (ii) could be replaced by

llc?lli.'(ßi(x)) —► 0 as |.x| —► oo. In this case, we need only apply the embed-

ding theorem of [3, Theorem 2.3] in the proofs above, where the property that

llcTlk^inxni.) can be arbitrarily small is used.
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