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Abstract. We should show that we may use a lemma of Day to prove, among

others, a generalization of a common fixed point theorem of Brodskii and Mil-

man when restricted to normed linear spaces that are uniformly convex in every

direction.

Introduction

Throughout this note N will denote a normed linear space with dual N*.

The norms in N and N* are denoted by || • ||.

We denote by / the identity mapping of N ; by T: D(T) ç N —> N a
mapping T with domain D(T) ç N into N and with range of T, R(T) =

{T(u): u £ D(T)} ; and for scalars r and 5, by (rl + sT) the mapping with

domain D(T) such that (rl + sT)u = rlu + sTu for u £ D(T), where Tu =

T(u). For scalar r, subsets R, S ç N, rS is the set of all ry with y e S and

R + S denotes the set of all x + y with x e R and y £ S. We also write y + S

for {y} + S.
Let T: D(T) ç N —► N. T is said to be nonexpansive if \\Tu - Tv\\ <

\\u - v\\ for all u, v £ D(T) ; noncontractive if \\Tu - Tv\\ > \\u - v\\ for all

u,v eZ)(r); pseudocontractive if \\((l+r)I-rT)u-((l+r)I-rT)v}\ > \\u-v\\
for all u, v £ D(T) and all r > 0; accretive if ||(/ + rT)u - (I + rT)v\\ >

\\u - v\\ for all u, v e D(T) and all r > 0.

Remark 1. It is known that a single-valued nonexpansive map is pseudocon-

tractive.

The importance of pseudocontractive mappings is established by the follow-

ing characterization in Browder [2]:

T: D(T) C N —> N is pseudocontractive if and only if / - T
is accretive.

In Kato [7] a multiple-valued mapping T: D(T) ç N —> N, that is,  Tu is
a subset of N for each u e D(T), is called accretive if for each r > 0 and

u,v£ D(T),

\\x -y\\ < ||«-tz||     whenever x e (I + rT)u, y e (I + rT)v.
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If T: D(T) ç N —> N is multiple-valued and we define T to be pseudocon-

tractive if for each r > 0 and u, v e D(T),

\\x - y\\ > \\u - v\\     whenever x e ((1 + r)I - rT)u, y e ((1 + r)I - rT)v ,

then Browder's characterization of single-valued pseudocontractive mapping

still holds for a multiple-valued mapping.

Proposition. Let T: D(T) ç N —► N be multiple-valued. T is pseudocontractive

if and only if I - T is accretive.

Proof. Given r > 0; u, v e D(T) ; w e Tu,  and z e Tv , we have

||((1 + r)u - rw) - ((1 + r)v - rz)\\ = \\(u + r(u - w)) - (v + r(v - z))\\

from which the truth of the proposition is easily deduced.

If T is multiple-valued and pseudocontractive, then ((1 + r)I - rT)u are

disjoint for different u and all r > 0, so we can define, for each r > 0, a

single-valued mapping Jr = ((1 + r)I - rT)~x , with D(Jr) = R((l + r)I - rT)

and R(Jr) = D(T), by Jrx = u if and only if x e ((1 + r)I - rT)u .

Lemma 1. For each r > 0,

(i)   Jr is nonexpansive;

(ii)   Jr and T have the same fixed point(s).

Proof, (i) This follows directly from the definitions of pseudocontractive map-

ping and Jr.

(ii) From the definition of Jr, we have

Jru = u   if and only if   u £ ((1 + r)I - rT)u.

Since u £ Tu if and only if u £ ((1 + r)I - rT)u, (ii) follows.

Remark 2. The definition of a multiple-valued accretive mapping that we use

here is that of Kato [7], where it is shown that if N is a real Banach space

then T is accretive if and only if for each u, v e D(T) and each x e Tu

and y £ Tv , there exists / e F(u - v) such that (x - y, /) > 0. Here F is

the duality map of N into N* ; it is by definition the unique multiple-valued

mapping from N into N* with domain D(F) = N such that / e Fx if

and only if (x, /) = ||x||2 = ||/||2, where (x, f) denotes the pairing between

x e N and f £ N*.
Let N and M be real Banach spaces, M * the conjugate space of M. Let tp

be a mapping of N into M* suchthat 4>(N) is dense in M* with ||</>(z/)||w. =

\\u\\n , tp(ru) = rtf)(u),  for all u in N, r > 0 .
Browder [3] introduced ç!>-accretive mappings, generalizing the concept of a

monotone mapping from N to N* and of a accretive mapping from N to N.

In Browder [3] a map f of N into M is said to be strongly (/»-accretive if

there exists c > 0 such that for all u and v in N, (f(u) - f(v), tf>(u - v)) >

c\\u - v\\2.
It is also mentioned there that similar definitions may be formulated for maps

of N into 2M , and in particular for single-valued mappings / defined only

on a subset D(f) of N .
Let / be a multiple-valued mapping from a subset of N into M, that is,

/: D{f) Q N —> 2M . The map / is said to be strongly weak-^-accretive with
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constant c if there exists c > 0 such that for all u, v in N and x in f(u)

and y in f(v),

(y - x, (f>(v - u)) > c\\v - u\\2,

where tj> is only required to satisfy ||0(m)||ji/» < ||w||¿v for all u in N.

c\\v - u\\2 <(y-x,tp(v- u)) < \\y - x|| • \\tj>(v - u)\\

<\\y-x\\-\\v-u\\,

so f(u) are disjoint for different u, and we can define a single-valued mapping

f~x,v/ith D(f-x) = R(f) and R(f~x) = D(f), by f~1{x) = u if and only if x
e f(u).

Lemma 2. Let f: D{f) ç N -* M be a multiple-valued strongly weak-tp-

accretive mapping with constant c. If c > 1, then

(i)   f~x is nonexpansive;

(ii)   f~x and fi have the same fixed point(s).

Proof, (i) and (ii) follow directly from the definitions of f~x and strongly weak

^-accretive mapping with constant c.

The radius RP(A) of a bounded set A ç N from a point p e N is

sup{||p-x||: x e ^4}. The diameter of A, diam /I, is sup{||x-y||: x, y £ A}.

If C is another set in N, then the Cebysev radius for A in C, R(A, C),

is inf\RC(A): c e C}, and the Cebysev centers of A in C, C(^4, C), is
{c £ C : RC(A) = R(A , C)}.

A convex set A ç N is said to have normal structure if for each closed

convex bounded set W in A with more than one point there is a point p in

W such that RP(W) < diam 1^ .
Brodskii and Milman [1] introduced the notion of normal structure and

proved their well-known theorem:

Theorem 1 (Brodskii and Milman). If K ç N, where N is complete, is a convex

weakly compact set with normal structure, then there is a common fixed point for

the set of all isometries of K onto K.

A normed linear space N is said to be uniformly convex or rotund in every

direction if and only if, for every nonzero member z of N and e > 0, there

exists a ô > 0, such that \X\ < e if ||x|| = ||y|| = 1, x - y — Xz and ||x + y|| >

2(1-6).

Theorem 2 (Day, James, and Swaminathan). Let N be a normed linear space

that is uniformly convex in every direction, and let H be a nonempty bounded

subset of a convex subset S of N. Then C(H, S) has at most one member.

Lemma 3.u.c. of Day [4] states that

Lemma 3. If E ç N is a set that has in it exactly one Cebysev center c, then c

is a fixed point of every isometry of E onto E.

It so happened that with an equality sign changed to an inequality sign, the

proof of this lemma remains valid for onto nonexpansive maps, so we call the

following lemma
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Day's Lemma. If K ç N is a set that has in it exactly one Cebysev center c,

then c is a common fixed point for all those mappings T of K onto K that

are either nonexpansive or noncontractive

Proof. For mappings T that are nonexpansive, please refer to the proof of

Lemma 3.u.c. of Day [4].
If T of K onto K is noncontractive, then T is one-to-one, so its inverse

T~' exists. Moreover T~x is from K onto K and nonexpansive, so T~xc =

c and hence Tc = c.

We are fortunate enough to have noticed this lemma, as it enables us to prove,

among others, a generalization of the above-mentioned theorem of Brodskii and

Milman when the underlying linear space is uniformly convex in every direction.

Theorem 3. If K is a convex, weakly compact set in a normed linear space N

that is uniformly rotund in every direction, then there is a common fixed point

{the unique Cebysev center c of K) for the set of all those mappings T of K

onto K that are either nonexpansive or noncontractive.

Proof. Since C{K, K) is not empty and a weakly compact set in a normed

linear space is bounded (see, e.g., Day [5]), Theorem 3 follows from Theorem

2 and Day's Lemma.

Theorem 4. If c is the center of a closed or open ball B of radius r in a normed

linear space N, then c is a common fixed point for the set of all those mappings

T of B onto B that are either nonexpansive or noncontractive.

Proof. It is easy to see that c is the unique Cebysev center of B in B, so

Theorem 4 follows from Day's Lemma.

Theorem 5. If K is a convex, weakly compact set in a normed linear space N

that is uniformly rotund in every direction, then there is a common fixed point

(the unique Cebysev center c of K) for the set P of all those multiple-valued

pseudo-contractive mappings T: D{T) = K —► TV, of K into N satisfying the

following conditions. For each T e P,

(i) there exists a positive number r{T) such that Mr(T)(u) n K is not empty

for each u e K, where, if we set r{T) = r,

Mr{T) = ((I + r(T))I - r(T)T)

= ((1 + r)I - rT): D(T) = K -» N,

(ii) range of Mr(r) contains K .

Proof. In view of Lemma 1 and Theorem 3, it suffices to show that for each

T e P , the restriction of Jr = Mf^ to K , Jr, maps K onto K .

Since the range of Mr{j) contains K, Jr maps K into K. To show that Jr

is onto, let u e K, it follows from condition (i) that there isa ys Mr¡j)U n K .

Clearly Jr{y) = u. Thus Jr maps K onto K .

Theorem 6. Let c be a point in a normed linear space N and Br be a closed

or open ball of radius R with center c. Let Pr be the set of all those multiple-

valued pseudocontractive mappings T: D(T) ç N -* N, whose domain, D(T),

contains BR . Suppose that for each T e Pr, conditions (i) azza" (ii) of Theorem

5 are satisfied if K is changed to BR and T to the restriction of T to BR.
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If P is the union of Pr for all R > 0, then c is a common fixed point of the

members of P.

Proof. The truth of Theorem 6 can be seen from Lemma 1, Theorem 4, and

the proof of Theorem 5.

Theorem 7. // K is a convex, weakly compact set in a normed linear space N

that is uniformly rotund in every direction, then there is a common fixed point

(the unique Cebysev center c of K) for the set P of all those multiple-valued

strongly weak-tf>-accretive mappings f:D(f) = K^N with constant c > 1

satisfying the following conditions. For each f in P,

(i)   f(u)C\K is not empty for each u in K ;

(ii) range of f contains K.

Proof. In view of Lemma 2 and Theorem 3, it suffices to show that for each /

in P, the restriction of /" ' to K, f~ ' , maps K onto K.

Since the range of / contains K, f~x maps K into K. Let u in K, it

follows from condition (i) that there is a x in f(u) n K . Clearly f~x(x) — u,

so f~ '  maps K onto K.

Theorem 8. Let c be a point in a normed linear space N and Br be a closed

or open ball of radius R with center c. Let Pr be the set of all those multiple-

valued strongly weak-tp-accretive mappings f: D(f) ç N —► N with constant

c > I, whose domain, D(f), contains BR. Suppose that for each f in Pr,

conditions (i) and (ii) of Theorem 1 are satisfied if K is changed to BR and f

to the restriction of f to Br . If P is the union of Pr for all R > 0, then c is

a common fixed point of the members of P.

Proof. The truth of Theorem 8 can be seen from Lemma 2, Theorem 4, and

the proof of Theorem 7.
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