ON THE POINCARÉ SERIES FOR DIAGONAL FORMS

JUN WANG

(Communicated by William W. Adams)

ABSTRACT. Let p be a fixed prime, $f(x_1, \ldots, x_s)$ a polynomial over \mathbb{Z}_p , the *p*-adic integers, c_n the number of solutions of f = 0 over $\mathbb{Z}/p^n\mathbb{Z}$, and $P_f(t) = \sum_{n=0}^{\infty} c_n t^n$ the Poincaré series. Explicit formulas for $P_f(t)$ are derived for diagonal forms.

1. INTRODUCTION

Let p be a fixed prime and $f(x_1, \ldots, x_s)$ a polynomial with coefficients in \mathbb{Z}_p , the p-adic integers. Let c_n denote the number of solutions of f = 0 over the ring $\mathbb{Z}/p^n\mathbb{Z}$, with $c_0 = 1$. Then the Poincaré series $P_f(t)$ is the generating function

$$P_f(t) = \sum_{n=0}^{\infty} c_n t^n$$

This series was introduced by Borevich and Shafarevich [1, p. 47], who conjectured that $P_f(t)$ is a rational function of t for all polynomials. This was proved by Igusa in 1975 in a more general setting, by using a mixture of analytic and algebraic methods [2, 3]. Since the proof is nonconstructive, deriving explicit formulas for $P_f(t)$ is an interesting problem. In this direction Goldman [4, 5] treated strongly nondegenerate forms and algebraic curves all of whose singularities are "locally" of the form $\alpha x^a = \beta y^b$, while polynomials of form $\sum x_i^{d_i}$ with $p \nmid d_i$ were investigated earlier by Stevenson [6], using Jacobi sums.

In this paper we discuss, by means of exponential sums, the general diagonal form as

(1)
$$f(x) = a_1 x_1^{d_1} + \dots + a_s x_s^{d_s},$$

where s, d_1, \ldots, d_s , and n are positive integers and a_1, \ldots, a_s are the units in \mathbb{Z}_p .

It is clear that $c_n = p^{n(s-1)}$ if $d_i = 1$, for some $i, 1 \le i \le s$. Therefore we assume that d_1, \ldots, d_s are all integers greater than 1.

Throughout this paper, we set $d = \operatorname{lcm}\{d_1, \ldots, d_s\}$, $f_i = d/d_i$, $r = f_1 + \cdots + f_s$, and $\overline{c}_n = p^{-n(s-1)}c_n$.

©1992 American Mathematical Society 0002-9939/92 \$1.00 + \$.25 per page

Received by the editors January 2, 1990 and, in revised form, November 21, 1990.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11T99, 11E76; Secondary 11L03.

JUN WANG

2. EXPONENTIAL SUMS

Let $m \ge 0$ and define

$$e_m(u) = e^{2\pi i u/p^m}, \qquad u \in \mathbb{Z}_p.$$

The function $e_m(u)$ defines an additive character mod p^m and has the following simple properties:

(2)
$$e_0(u) = 1$$
, $e_m(u) = e_m(u')$ if $u \equiv u' \mod p^m$,

(3)
$$e_m(up^j) = e_{m-j}(u) \quad (0 \le j \le m),$$

(4)
$$\sum_{z \mod p^m} e_m(uz) = \begin{cases} p^m & \text{if } u \equiv 0 \mod p^m, \\ 0 & \text{otherwise.} \end{cases}$$

For $k \ge 1$, we define

$$S_m(u, k) = \sum_{z \mod p^m} e_m(uz^k), \qquad S_0(u, k) = 1.$$

It is clear that if $m \ge j \ge 0$ then

(5)
$$S_m(up^j, k) = p^j S_{m-j}(u, k).$$

The following lemmas are useful in the proof of the main theorem.

Lemma 1. Let (u, p) = 1, $m \ge k \ge 1$, and $(p, m, k) \ne (2, 2, 2), (2, 3, 2)$, and (2, 4, 4). Then

$$S_m(u, k) = p^{k-1}S_{m-k}(u, k)$$

Proof. Suppose $\operatorname{ord}_p k = l \ge 0$. From $m \ge l+1$ and $(p, m, k) \ne (2, 2, 2)$ it follows that m > l+1 and $\{z \mod p^m\} = \{y + xp^{m-l-1} | y \mod p^{m-l-1}, x \mod p^{l+1}\}$. Using the Binomial theorem, we have

$$(y+xp^{m-l-1})^{k} = \sum_{i=0}^{k} \binom{k}{i} y^{k-i} x^{i} p^{i(m-l-1)}.$$

If $l \ge 3$ then $p^l \ge 2(l+1)$. From this it follows that $m \ge k \ge p^l \ge 2(l+1)$, $i(m-l-1) \ge 2(m-l-1) \ge m$, and

(6)
$$\operatorname{ord}_{p}\binom{k}{i} + i(m-l-1) \ge m, \quad 1 < i \le k.$$

For l = 0, 1, and 2, it is not difficult to show that (6) is true except for p = 2, m = 3, k = 2 and p = 2, m = k = 4. Hence, under the conditions of the lemma, we have

$$(y + xp^{m-l-1})^k \equiv y^k + ky^{k-1}xp^{m-l-1} \mod p^m$$

and

$$S_m(u, k) = \sum_{y \mod p^{m-l-1}} e_m(uy^k) \sum_{x \mod p^{l+1}} e_{l+1}(uky^{k-1}x).$$

Since $\operatorname{ord}_p k = l$, by (4), the inner sum = 0 unless $y \equiv 0 \mod p$, in which case

608

it has the value p^{l+1} . Hence, we have, by setting $y = y_1 p$, $y_1 \mod p^{m-l-2}$, that

$$S_m(u, k) = p^{l+1} \sum_{y_1 \mod p^{m-l-2}} e_{m-k}(uy_1^k).$$

From this it is easy to see that $S_m(u, k) = p^{k-1}S_{m-k}(u, k)$ when $m-k \le m-l-2$. If m-k > m-l-2 then k = l+1, it follows that k = p = 2. In this case, from $m \ge 4$ it can be seen that if $y_1 \equiv y_2 \mod 2^{m-3}$ then $y_1^2 \equiv y_2^2 \mod 2^{m-2}$, in which case

$$S_m(u, 2) = 2^2 \sum_{y_1 \mod 2^{m-3}} e_{m-2}(uy_1^2) = 2 \sum_{y_1 \mod 2^{m-2}} e_{m-2}(uy_1^2) = 2S_{m-2}(u, 2).$$

The proof is complete. \Box

From Lemma 1, we distinguish two cases.

Case A. p is an odd prime or $d_i \neq 2$, 4 for each $i, 1 \le i \le s$.

Case B. p = 2 and $d_i = 2$ or 4 for some $i, 1 \le i \le s$. From $m \ge 0$, put $T_m = p^{-ms} \sum_{(v, p^m)=1} S_m(va_1, d_1) \cdots S_m(va_s, d_s)$.

Lemma 2. $T_{d+j} = p^{d-r}T_j$, for j > 0 in Case A and for j > 1 in Case B. $T_d = p^{d-r} - p^{d-r-1}$ in Case A.

Proof. For j > 1, if $d_i = 2$ then $d_i + j \ge 4$ and if $d_i = 4$ then $d_i + j \ge 6$, and Lemma 1 gives

$$S_{d+j}(u, d_i) = p^{f_i(d_i-1)} S_j(u, d_i), \qquad i = 1, 2, ..., s.$$

Evidently, this is true for j = 1 in Case A. Therefore,

$$T_{d+j} = p^{-(d+j)s} \sum_{(v, p^{d+j})=1} S_{d+j}(va_1, d_1) \cdots S_{d+j}(va_s, d_s)$$

= $p^{-(d+j)s} \sum_{(v, p^{d+j})=1} \prod_{i=1}^{s} p^{f_i(d_i-1)} s_j(va_i, d_i) = p^{d-r} T_j.$

In Case A, we have

$$\begin{split} T_d &= p^{-ds} \sum_{(v, p^d)=1} \prod_{i=1}^s S_d(va_i, d_i) \\ &= p^{-ds} \sum_{(v, p^d)=1} \prod_{i=1}^s p^{f_i(d_i-1)} S_0(va_i, d_i) = p^{d-r} - p^{d-r-1}. \quad \Box \end{split}$$

3. MAIN RESULTS

Theorem 1. For any prime p and f(x) as in (1), we have

(i) recursion: For $n \ge 2$, $\overline{c}_{n+d} = c + p^{d-r}\overline{c}_n$;

(ii) the Poincaré series is given by

$$P(t) = \frac{(1 - p^{s-1}t)(\sum_{i=0}^{d+1} c_i t^i) + c p^{(d+2)(s-1)} t^{d+2} - p^{ds-r} t^d (1 - p^{s-1}t)(1 + c_1 t)}{(1 - p^{s-1}t)(1 - p^{ds-r} t^d)},$$

where $c = \overline{c}_{d+1} - p^{d-r}\overline{c}_1$ is a constant depending only upon the polynomial f(x).

Proof. (i) From (4), we have

$$c_n = p^{-n} \sum_{x_1, \dots, x_s \mod p^n} \sum_{u \mod p^n} e_n(u(a_1 x_1^{d_1} + \dots + a_s x_s^{d_s}))$$

= $p^{-n} \sum_{u \mod p^n} S_n(ua_1, d_1) \cdots S_n(ua_s, d_s).$

In the summation $u \mod p^n$, we may set $u = vp^{n-m}$, $0 \le m \le n$, $v \mod p^m$, and (v, p) = 1. From (5) one has

$$c_n = p^{n(s-1)} \sum_{m=0}^n p^{-ms} \sum_{\substack{(v, p^m)=1}}^{\infty} S_m(va_1, d_1) \cdots S_m(va_s, d_s)$$
$$= p^{n(s-1)} \sum_{m=0}^n T_m.$$

For $n \ge 2$, by Lemma 2, we have

$$\overline{c}_{n+d} = \sum_{m=0}^{n+d} T_m = \sum_{m=0}^{d+1} T_m + \sum_{m=2}^n T_{d+m}$$
$$= \overline{c}_{d+1} + \sum_{m=2}^n p^{d-r} T_m = \overline{c}_{d+1} + p^{d-r} (\overline{c}_n - \overline{c}_1) = c + p^{d-r} \overline{c}_n \,.$$

(ii) Put $p^{s-1}t = t_1$, then

$$P(t) = \sum_{n=0}^{\infty} c_n t^n = \sum_{i=0}^{d+1} c_i t^i + \sum_{n=2}^{\infty} c_{n+d} t^{n+d}$$

= $\sum_{i=0}^{d+1} c_i t^i + \sum_{n=2}^{\infty} \overline{c}_{n+d} t_1^{n+d} = \sum_{i=0}^{d+1} c_i t^i + \sum_{n=2}^{\infty} (c + p^{d-r} \overline{c}_n) t_1^{n+d}$
= $\sum_{i=0}^{d+1} c_i t^i + c t_1^{d+2} (1 - t_1)^{-1} + p^{d-r} t_1^d (P(t) - 1 - c_1 t).$

This gives the result of the theorem. \Box

In Case A, by Lemma 2, we have

$$\overline{c}_{d} = \sum_{m=0}^{d} T_{m} = \overline{c}_{d-1} + T_{d} = \overline{c}_{d-1} - p^{d-r-1} + p^{d-r},$$

$$\overline{c}_{d+1} = \sum_{m=0}^{d+1} T_{m} = \overline{c}_{d} + T_{d+1} = \overline{c}_{d} + p^{d-r}T_{1}$$

$$= \overline{c}_{d-1} - p^{d-r-1} + p^{d-r} + p^{d-r}(\overline{c}_{1} - 1) = \overline{c}_{d-1} - p^{d-r-1} + p^{d-r}\overline{c}_{1}.$$

Set $c' = \overline{c}_{d-1} - p^{d-r-1}$; then c' = c. The preceding discussion suggests that we may take $\overline{c}_0, \overline{c}_1, \ldots, \overline{c}_{d-1}$ as the original values of the recursion relation of \overline{c}_n , and we have

610

Theorem 2. Suppose that p is an odd prime or p = 2, $d_i \neq 2$, 4 for each i, $1 \le i \le s$. Then we have

- (i) recursion: For $n \ge 0$, $\overline{c}_{n+d} = c' + p^{d-r}\overline{c}_n$;
- (ii) the Poincaré series is given by

$$P(t) = \frac{(1 - p^{s-1}t)(\sum_{i=0}^{d-1} c_i t^i) + c' p^{d(s-1)} t^d}{(1 - p^{s-1}t)(1 - p^{ds-r} t^d)},$$

where $c' = \overline{c}_{d-1} - p^{d-r-1}$ is a constant depending only upon the polynomial f(x).

ACKNOWLEDGMENTS

The author is deeply indebted to the referee for valuable suggestions.

References

- 1. Z. I. Borevich and I. R. Shafarevich, Number theory, Academic Press, New York, 1966.
- 2. J. Igusa, Complex powers and asymptotic expansions. II, J. Reine Angew. Math. 278/279 (1979), 307-321.
- 3. ____, Some observations on higher degree character, Amer. J. Math. 99 (1977), 393-471.
- 4. J. R. Goldman, Numbers of solutions of congruences: Poincaré series for strongly nondegenerate forms, Proc Amer. Math. Soc. 87 (1983), 586-590.
- 5. ____, Numbers of solutions of congruences: Poincaré series for algebraic curves, Adv. in Math. 62 (1986), 68-83.
- 6. E. Stevenson, *The rationality of the Poincaré series of a diagonal form*, Thesis, Princeton Univ., 1978.

Institute of Applied Mathematics, Dalian University of Technology, Dalian 116024, People's Republic of China