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Abstract. Let p be a fixed prime, f(x\, ... , xs) a polynomial over Zp ,

the p-adic integers, c„ the number of solutions of / = 0 over Z/p"Z , and

PfU) — Z^oc'!'" the Poincaré series. Explicit formulas for Pf(t) are derived

for diagonal forms.

1. Introduction

Let p be a fixed prime and f{x\, ... , xs) a polynomial with coefficients in

Zp , the /7-adic integers. Let c„ denote the number of solutions of / = 0 over

the ring Z/p"Z, with en = 1 . Then the Poincaré series Fy {t) is the generating

function

pf{t)=Y^c„tn.
n=0

This series was introduced by Borevich and Shafarevich [1, p. 47], who con-

jectured that Pf{t) is a rational function of t for all polynomials. This was

proved by Igusa in 1975 in a more general setting, by using a mixture of analytic

and algebraic methods [2, 3]. Since the proof is nonconstructive, deriving ex-

plicit formulas for P/{t) is an interesting problem. In this direction Goldman

[4, 5] treated strongly nondegenerate forms and algebraic curves all of whose

singularities are "locally" of the form axa - ßyb , while polynomials of form

Y^xf with p \ d¡ were investigated earlier by Stevenson [6], using Jacobi sums.

In this paper we discuss, by means of exponential sums, the general diagonal
form as

(1) f{x) = alx'(i+--- + asxf°,

where s, d\ , ... , ds, and n are positive integers and a\ , ... , as are the units

in Zp.

It is clear that c„ = pn<-s~^ if d,■ — 1, for some /, I < i < s . Therefore we

assume that d\, ... , ds are all integers greater than 1.

Throughout this paper, we set d = lcm{ú?i,... , ds}, fi = d/d¡, r — f +

••■ + /,, and cn=p-«*-Vcn.
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2. Exponential sums

Let m > 0 and define

em{u) = e2n'"lPm ,        ueZp.

The function em{u) defines an additive character mod pm and has the follow-

ing simple properties:

(2) eo{u) — 1,    em{u) = em{u')       if u = u'   mod pm ,

(3) em{upJ) = em-j{u)       (0 < j < m),

_ ( pm    ifM = 0 mod//",

(4) ç ^)={0 othenvise
z mod />"'

For k > 1 , we define

Sm{u,k)=    ^2    em{uzk),        So{u,k) = \.
z mod pm

It is clear that if m> j > 0 then

(5) Sm{<upJ,k)=i>sSm-j{u,k).

The following lemmas are useful in the proof of the main theorem.

Lemma 1. Let {u, p) = I, m > k > 1, and {p, m, k) / (2, 2, 2), (2, 3, 2),
and (2, 4, 4). F/ze«

Sm(u, k) = pk~xSm_k{u, k).

Proof. Suppose ordp k — I > 0. From m > I + 1 and {p, m , k) / (2, 2, 2)
it follows that m > / + 1 and {z mod />m} = {y + xpm~'~x\y mod pm^'~x , x

mod /?'+1} . Using the Binomial theorem, we have

-i){y + xpm~'-x)k = ¿ (k\k-'x'p,{m-!

;=0 ^''

If / > 3 then /?' > 2{l + 1). From this it follows that m > k > p' > 2{l + 1),
i{m - / — 1) > 2(w - / - 1 ) > m , and

(6) ordp ( . ) + i{m - I - I) > m , I < i < k .

For / = 0, 1 , and 2, it is not difficult to show that (6) is true except for p - 2,

m — 3, k = 2 and p = 2,m = k — A. Hence, under the conditions of the

lemma, we have

{y + xpm-'-x)k = yk + kyk-xxpm~'~x    mod pm

and

Sm{u,k)=      Y,      em{uyk)    Y,    e/+[{ukyk~xx).

y modpm_'_l x mod p1*1

Since ordp k — I, by (4), the inner sum = 0 unless y = 0 mod /?, in which case
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it has the value pl+x . Hence, we have, by setting y = yip, j>¡ mod pm~'~2,

that

Sm{u,k)=pl+X       Y       em_k{uy\).

y¡ mod pm_'-2

From this it is easy to see that Sm{u, k) = pk~xSm_k{u, k) when m - k <

m - I -2 . If m - k > m- I -2 then k = I + 1, it follows that k — p — 2 . In
this case, from m > A it can be seen that if yi = y2 mod 2m~3 then y^ = y|

mod 2m~2, in which case

Sm{u,2) = 22      Y     em-2{uy\) = 2     Y     em_2{uy2) = 25m_2(w, 2).
Vi mod 2m_3 >i| mod 2m~2

The proof is complete.   D

From Lemma 1, we distinguish two cases.

Case A. p is an odd prime or d, ^ 2, 4 for each ;', 1 < / < s.

Case B. p = 2 and d¡ — 2 or 4 for some i, I < i < s .

From m>0,put Fm = p~ms E(t,,p«)=i ^m(^«i, dx) ■ ■ -Sm{vas, ds).

Lemma 2. Td+j = pd~rT¡, for j > 0 in Case A and for j > 1 in Case B.
Td = pd~r -pd-r~x in Case A.

Proof. For j > 1, if d¡ = 2 then d, + / > 4 and if ¿Z, = 4 then d¡ + j > 6,
and Lemma 1 gives

S¿+j(k, di) = ptM-VSjiu ,d¡),       i =1,2,..., s.

Evidently, this is true for / = 1 in Case A. Therefore,

Td+j = p-(d+»s     Y,     Wüfli ,di)- --Sd+J{vas, ds)
{v ,pä+i)=\

s

= p-(d+j)s     £      ~\pf'(d'-X)Sj{vai, di) = pd-'Tj.

(ti,prf+j)=i (=i

In Case A, we have

Td=p-ds    Y    WSdiva^d,)
(v ,pd)=\ i=l

= p~ds    Y     ~[pf,(d,~i)S0{vai,dl)=pd-r-pd~r-x .   D

(«,p¿)=i i=i

3. Main results

Theorem 1. For any prime p and f{x) as in (1), we have

(i) recursion: For n > 2, cn+d = c + pd~rc„ ;

(ii) the Poincaré series is given by

= (l -p'-'QCEt+o1 añ + cptd+2*-vtd+2 -pds~rtd{i -ps-it)<i+Clt)

U (1 -ps~lt){l -pds-'t<t)

where c = cd+\ -pd~rc\ is a constant depending only upon the polynomial f{x).
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Proof, (i) From (4), we have

Cn=P~n        Y E   en{u{aixdi +--- + asx^))

x¡ ,..., x, mod p" u mod p"

= p~"   Y   Sn{uai, di) ■ ■ ■ Sn{uas, ds).
u mod p"

In the summation u mod p" , we may set u — vp"~m , 0 < m < n , v mod pm ,

and {v , p) = 1 . From (5) one has

n

cn=pn^YP~ms    E    Sm{vai,di)---Sm{vas,ds)

m=0 (v,pm)=l

= Pn(s~[)YTm.

m=0

For n > 2, by Lemma 2, we have

n+d d+\ n

Cn+d —   Yi ^m = Y* ^m + Yi Td+m
m=0 m=0 m=2

n

-Cd+\ + Ypd~rTm =Cd+\ +Pd~r{Cn -Ci) = C + pd~rCn.

m=2

(ii) Put ps~it = h, then

OO d+\ OO

n+dp{t)=Ycntn = zZc<ti + ¿2c»+dtn
n=0 i=0 «=2

d+\ oo i/+l oo

- Ec^ + £ wTd = Ec<'' + Dc+^"r^)/i
i=0 n=2 j=0 n=2

rf+1

= Yc.t' + cti^^-ti)-' +pd-rtd{P{t)-l-cit).

(=0

This gives the result of the theorem.   D

In Case A, by Lemma 2, we have

d

Cd=YTm =Cd-\ +Td = Cd_i -pd   r   ' +p

m=0

d+\

Cd+\ =   YTm=Cd + Td+1 =Cd+Pd   rT\

m=0

= Cd_x -pd~r-X +pd-r+pd-r{çx _ ,) = ^_] _ pd-r-X + pd-% _

Set c' = q_i -pd~r~x ; then d = c. The preceding discussion suggests that

we may take Cq,C\, ... , cd_x as the original values of the recursion relation

of cn, and we have
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Theorem 2. Suppose that p is an odd prime or p = 2, d, ■£ 2, A for each i,

1 < i < s. Then we have
(i) recursion: For n > 0, cn+d — c' + pd~rcn ;

(ii) the Poincaré series is given by

p(t] = {\-ps-lt){El:olCiñ + c'Pd{s-1)td

U {l-ps-H){l-pds~rtd)

where c' — q_[ - pd~r~x  is a constant depending only upon the polynomial

fix).
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