ON THE POINCARÉ SERIES FOR DIAGONAL FORMS

JUN WANG
(Communicated by William W. Adams)

Abstract

Let p be a fixed prime, $f\left(x_{1}, \ldots, x_{s}\right)$ a polynomial over \mathbf{Z}_{p}, the p-adic integers, c_{n} the number of solutions of $f=0$ over $\mathbf{Z} / p^{n} \mathbf{Z}$, and $P_{f}(t)=\sum_{n=0}^{\infty} c_{n} t^{n}$ the Poincaré series. Explicit formulas for $P_{f}(t)$ are derived for diagonal forms.

1. Introduction

Let p be a fixed prime and $f\left(x_{1}, \ldots, x_{s}\right)$ a polynomial with coefficients in \mathbf{Z}_{p}, the p-adic integers. Let c_{n} denote the number of solutions of $f=0$ over the ring $\mathbf{Z} / p^{n} \mathbf{Z}$, with $c_{0}=1$. Then the Poincaré series $P_{f}(t)$ is the generating function

$$
P_{f}(t)=\sum_{n=0}^{\infty} c_{n} t^{n}
$$

This series was introduced by Borevich and Shafarevich [1, p. 47], who conjectured that $P_{f}(t)$ is a rational function of t for all polynomials. This was proved by Igusa in 1975 in a more general setting, by using a mixture of analytic and algebraic methods [2, 3]. Since the proof is nonconstructive, deriving explicit formulas for $P_{f}(t)$ is an interesting problem. In this direction Goldman $[4,5]$ treated strongly nondegenerate forms and algebraic curves all of whose singularities are "locally" of the form $\alpha x^{a}=\beta y^{b}$, while polynomials of form $\sum x_{i}^{d_{i}}$ with $p \nmid d_{i}$ were investigated earlier by Stevenson [6], using Jacobi sums.

In this paper we discuss, by means of exponential sums, the general diagonal form as

$$
\begin{equation*}
f(x)=a_{1} x_{1}^{d_{1}}+\cdots+a_{s} x_{s}^{d_{s}}, \tag{1}
\end{equation*}
$$

where s, d_{1}, \ldots, d_{s}, and n are positive integers and a_{1}, \ldots, a_{s} are the units in \mathbf{Z}_{p}.

It is clear that $c_{n}=p^{n(s-1)}$ if $d_{i}=1$, for some $i, 1 \leq i \leq s$. Therefore we assume that d_{1}, \ldots, d_{s} are all integers greater than 1.

Throughout this paper, we set $d=\operatorname{lcm}\left\{d_{1}, \ldots, d_{s}\right\}, f_{i}=d / d_{i}, r=f_{1}+$ $\cdots+f_{s}$, and $\bar{c}_{n}=p^{-n(s-1)} c_{n}$.

Received by the editors January 2, 1990 and, in revised form, November 21, 1990.
1991 Mathematics Subject Classification. Primary 11T99, 11E76; Secondary 11L03.

2. Exponential sums

Let $m \geq 0$ and define

$$
e_{m}(u)=e^{2 \pi i u / p^{m}}, \quad u \in \mathbf{Z}_{p}
$$

The function $e_{m}(u)$ defines an additive character $\bmod p^{m}$ and has the following simple properties:

$$
\begin{gather*}
e_{0}(u)=1, \quad e_{m}(u)=e_{m}\left(u^{\prime}\right) \quad \text { if } u \equiv u^{\prime} \quad \bmod p^{m}, \tag{2}\\
e_{m}\left(u p^{j}\right)=e_{m-j}(u) \quad(0 \leq j \leq m) \tag{3}\\
\sum_{z \bmod p^{m}} e_{m}(u z)= \begin{cases}p^{m} & \text { if } u \equiv 0 \bmod p^{m} \\
0 & \text { otherwise. }\end{cases} \tag{4}
\end{gather*}
$$

For $k \geq 1$, we define

$$
S_{m}(u, k)=\sum_{z \bmod p^{m}} e_{m}\left(u z^{k}\right), \quad S_{0}(u, k)=1
$$

It is clear that if $m \geq j \geq 0$ then

$$
\begin{equation*}
S_{m}\left(u p^{j}, k\right)=p^{j} S_{m-j}(u, k) \tag{5}
\end{equation*}
$$

The following lemmas are useful in the proof of the main theorem.
Lemma 1. Let $(u, p)=1, m \geq k \geq 1$, and $(p, m, k) \neq(2,2,2),(2,3,2)$, and $(2,4,4)$. Then

$$
S_{m}(u, k)=p^{k-1} S_{m-k}(u, k)
$$

Proof. Suppose $\operatorname{ord}_{p} k=l \geq 0$. From $m \geq l+1$ and $(p, m, k) \neq(2,2,2)$ it follows that $m>l+1$ and $\left\{z \bmod p^{m}\right\}=\left\{y+x p^{m-l-1} \mid y \bmod p^{m-l-1}, x\right.$ $\left.\bmod p^{l+1}\right\}$. Using the Binomial theorem, we have

$$
\left(y+x p^{m-l-1}\right)^{k}=\sum_{i=0}^{k}\binom{k}{i} y^{k-i} x^{i} p^{i(m-l-1)}
$$

If $l \geq 3$ then $p^{l} \geq 2(l+1)$. From this it follows that $m \geq k \geq p^{l} \geq 2(l+1)$, $i(m-l-1) \geq 2(m-l-1) \geq m$, and

$$
\begin{equation*}
\operatorname{ord}_{p}\binom{k}{i}+i(m-l-1) \geq m, \quad 1<i \leq k \tag{6}
\end{equation*}
$$

For $l=0,1$, and 2 , it is not difficult to show that (6) is true except for $p=2$, $m=3, k=2$ and $p=2, m=k=4$. Hence, under the conditions of the lemma, we have

$$
\left(y+x p^{m-l-1}\right)^{k} \equiv y^{k}+k y^{k-1} x p^{m-l-1} \bmod p^{m}
$$

and

$$
S_{m}(u, k)=\sum_{y \bmod p^{m-l-1}} e_{m}\left(u y^{k}\right) \sum_{x \bmod p^{l+1}} e_{l+1}\left(u k y^{k-1} x\right) .
$$

Since $\operatorname{ord}_{p} k=l$, by (4), the inner sum $=0$ unless $y \equiv 0 \bmod p$, in which case
it has the value p^{l+1}. Hence, we have, by setting $y=y_{1} p, y_{1} \bmod p^{m-l-2}$, that

$$
S_{m}(u, k)=p^{l+1} \sum_{y_{1} \bmod p^{m-l-2}} e_{m-k}\left(u y_{1}^{k}\right)
$$

From this it is easy to see that $S_{m}(u, k)=p^{k-1} S_{m-k}(u, k)$ when $m-k \leq$ $m-l-2$. If $m-k>m-l-2$ then $k=l+1$, it follows that $k=p=2$. In this case, from $m \geq 4$ it can be seen that if $y_{1} \equiv y_{2} \bmod 2^{m-3}$ then $y_{1}^{2} \equiv y_{2}^{2}$ $\bmod 2^{m-2}$, in which case

$$
S_{m}(u, 2)=2^{2} \sum_{y_{1} \bmod 2^{m-3}} e_{m-2}\left(u y_{1}^{2}\right)=2 \sum_{y_{1} \bmod 2^{m-2}} e_{m-2}\left(u y_{1}^{2}\right)=2 S_{m-2}(u, 2)
$$

The proof is complete.
From Lemma 1, we distinguish two cases.
Case A. p is an odd prime or $d_{i} \neq 2,4$ for each $i, 1 \leq i \leq s$.
Case B. $p=2$ and $d_{i}=2$ or 4 for some $i, 1 \leq i \leq s$.
From $m \geq 0$, put $T_{m}=p^{-m s} \sum_{\left(v, p^{m}\right)=1} S_{m}\left(v a_{1}, d_{1}\right) \cdots S_{m}\left(v a_{s}, d_{s}\right)$.
Lemma 2. $T_{d+j}=p^{d-r} T_{j}$, for $j>0$ in Case A and for $j>1$ in Case B. $T_{d}=p^{d-r}-p^{d-r-1}$ in Case A.
Proof. For $j>1$, if $d_{i}=2$ then $d_{i}+j \geq 4$ and if $d_{i}=4$ then $d_{i}+j \geq 6$, and Lemma 1 gives

$$
S_{d+j}\left(u, d_{i}\right)=p^{f_{i}\left(d_{i}-1\right)} S_{j}\left(u, d_{i}\right), \quad i=1,2, \ldots, s
$$

Evidently, this is true for $j=1$ in Case A. Therefore,

$$
\begin{aligned}
T_{d+j} & =p^{-(d+j) s} \sum_{\left(v, p^{d+j}\right)=1} S_{d+j}\left(v a_{1}, d_{1}\right) \cdots S_{d+j}\left(v a_{s}, d_{s}\right) \\
& =p^{-(d+j) s} \sum_{\left(v, p^{d+j}\right)=1} \prod_{i=1}^{s} p^{f_{i}\left(d_{i}-1\right)} s_{j}\left(v a_{i}, d_{i}\right)=p^{d-r} T_{j}
\end{aligned}
$$

In Case A, we have

$$
\begin{aligned}
T_{d} & =p^{-d s} \sum_{\left(v, p^{d}\right)=1} \prod_{i=1}^{s} S_{d}\left(v a_{i}, d_{i}\right) \\
& =p^{-d s} \sum_{\left(v, p^{d}\right)=1} \prod_{i=1}^{s} p^{f_{i}\left(d_{i}-1\right)} S_{0}\left(v a_{i}, d_{i}\right)=p^{d-r}-p^{d-r-1}
\end{aligned}
$$

3. Main results

Theorem 1. For any prime p and $f(x)$ as in (1), we have
(i) recursion: For $n \geq 2, \bar{c}_{n+d}=c+p^{d-r} \bar{c}_{n}$;
(ii) the Poincare series is given by

$$
P(t)=\frac{\left(1-p^{s-1} t\right)\left(\sum_{i=0}^{d+1} c_{i} t^{i}\right)+c p^{(d+2)(s-1)} t^{d+2}-p^{d s-r} t^{d}\left(1-p^{s-1} t\right)\left(1+c_{1} t\right)}{\left(1-p^{s-1} t\right)\left(1-p^{d s-r} t^{d}\right)}
$$

where $c=\bar{c}_{d+1}-p^{d-r} \bar{c}_{1}$ is a constant depending only upon the polynomial $f(x)$.

Proof. (i) From (4), we have

$$
\begin{aligned}
c_{n} & =p^{-n} \sum_{x_{1}, \ldots, x_{s} \bmod p^{n} u \bmod p^{n}} e_{n}\left(u\left(a_{1} x_{1}^{d_{1}}+\cdots+a_{s} x_{s}^{d_{s}}\right)\right) \\
& =p^{-n} \sum_{u \bmod p^{n}} S_{n}\left(u a_{1}, d_{1}\right) \cdots S_{n}\left(u a_{s}, d_{s}\right) .
\end{aligned}
$$

In the summation $u \bmod p^{n}$, we may set $u=v p^{n-m}, 0 \leq m \leq n, v \bmod p^{m}$, and $(v, p)=1$. From (5) one has

$$
\begin{aligned}
c_{n} & =p^{n(s-1)} \sum_{m=0}^{n} p^{-m s} \sum_{\left(v, p^{m}\right)=1} S_{m}\left(v a_{1}, d_{1}\right) \cdots S_{m}\left(v a_{s}, d_{s}\right) \\
& =p^{n(s-1)} \sum_{m=0}^{n} T_{m}
\end{aligned}
$$

For $n \geq 2$, by Lemma 2, we have

$$
\begin{aligned}
\bar{c}_{n+d} & =\sum_{m=0}^{n+d} T_{m}=\sum_{m=0}^{d+1} T_{m}+\sum_{m=2}^{n} T_{d+m} \\
& =\bar{c}_{d+1}+\sum_{m=2}^{n} p^{d-r} T_{m}=\bar{c}_{d+1}+p^{d-r}\left(\bar{c}_{n}-\bar{c}_{1}\right)=c+p^{d-r} \bar{c}_{n}
\end{aligned}
$$

(ii) Put $p^{s-1} t=t_{1}$, then

$$
\begin{aligned}
P(t) & =\sum_{n=0}^{\infty} c_{n} t^{n}=\sum_{i=0}^{d+1} c_{i} t^{i}+\sum_{n=2}^{\infty} c_{n+d} t^{n+d} \\
& =\sum_{i=0}^{d+1} c_{i} t^{i}+\sum_{n=2}^{\infty} \bar{c}_{n+d} t_{1}^{n+d}=\sum_{i=0}^{d+1} c_{i} t^{i}+\sum_{n=2}^{\infty}\left(c+p^{d-r} \bar{c}_{n}\right) t_{1}^{n+d} \\
& =\sum_{i=0}^{d+1} c_{i} t^{i}+c t_{1}^{d+2}\left(1-t_{1}\right)^{-1}+p^{d-r} t_{1}^{d}\left(P(t)-1-c_{1} t\right)
\end{aligned}
$$

This gives the result of the theorem.
In Case A, by Lemma 2, we have

$$
\begin{aligned}
\bar{c}_{d} & =\sum_{m=0}^{d} T_{m}=\bar{c}_{d-1}+T_{d}=\bar{c}_{d-1}-p^{d-r-1}+p^{d-r} \\
\bar{c}_{d+1} & =\sum_{m=0}^{d+1} T_{m}=\bar{c}_{d}+T_{d+1}=\bar{c}_{d}+p^{d-r} T_{1} \\
& =\bar{c}_{d-1}-p^{d-r-1}+p^{d-r}+p^{d-r}\left(\bar{c}_{1}-1\right)=\bar{c}_{d-1}-p^{d-r-1}+p^{d-r} \bar{c}_{1}
\end{aligned}
$$

Set $c^{\prime}=\bar{c}_{d-1}-p^{d-r-1}$; then $c^{\prime}=c$. The preceding discussion suggests that we may take $\bar{c}_{0}, \bar{c}_{1}, \ldots, \bar{c}_{d-1}$ as the original values of the recursion relation of \bar{c}_{n}, and we have

Theorem 2. Suppose that p is an odd prime or $p=2, d_{i} \neq 2,4$ for each i, $1 \leq i \leq s$. Then we have
(i) recursion: For $n \geq 0, \bar{c}_{n+d}=c^{\prime}+p^{d-r} \bar{c}_{n}$;
(ii) the Poincaré series is given by

$$
P(t)=\frac{\left(1-p^{s-1} t\right)\left(\sum_{i=0}^{d-1} c_{i} t^{i}\right)+c^{\prime} p^{d(s-1)} t^{d}}{\left(1-p^{s-1} t\right)\left(1-p^{d s-r} t^{d}\right)}
$$

where $c^{\prime}=\bar{c}_{d-1}-p^{d-r-1}$ is a constant depending only upon the polynomial $f(x)$.

Acknowledgments

The author is deeply indebted to the referee for valuable suggestions.

References

1. Z. I. Borevich and I. R. Shafarevich, Number theory, Academic Press, New York, 1966.
2. J. Igusa, Complex powers and asymptotic expansions. II, J. Reine Angew. Math. 278/279 (1979), 307-321.
3. __, Some observations on higher degree character, Amer. J. Math. 99 (1977), 393-471.
4. J. R. Goldman, Numbers of solutions of congruences: Poincaré series for strongly nondegenerate forms, Proc Amer. Math. Soc. 87 (1983), 586-590.
5. __, Numbers of solutions of congruences: Poincaré series for algebraic curves, Adv. in Math. 62 (1986), 68-83.
6. E. Stevenson, The rationality of the Poincaré series of a diagonal form, Thesis, Princeton Univ., 1978.

Institute of Applied Mathematics, Dalian University of Technology, Dalian 116024, People's Republic of China

