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ABSTRACT. A case of the Aleksandrov problem for unit distance preserving
mappings between metric spaces is solved. The relevance of methods used in
mathematical foundations of quantum mechanics is shown for another case of
Aleksandrov problem involving angular distances 7#/2 on the unit sphere.

1. INTRODUCTION

Let X be a metric space with a metric d: X x X — Rt U {0}. A. D. Alek-
sandrov has posed the following problem: Under what conditions is a mapping
f: X — X preserving unit distance an isometry? (cf. [1]).

The problem has been solved for X a finite-dimensional real Euclidean space
X =E". If n=1, then such a mapping f does not need to be an isometry.
If 2<n < oo, f must be an isometry due to the theorem of Beckman and
Quarles [2]. For an infinite-dimensional Euclidean space E* the conclusion
does not hold. An example of a unit distance preserving mapping that is not an
isometry has been given by the second author [3]. All known examples of this
kind involve discontinuous mappings. A problem, therefore, has been raised by
the second author [3] whether a continuous mapping f: E>®° — E> preserving
unit distance must be an isometry. In fact, a similar property in case of a sphere
in a real or complex Hilbert space has been established by the first author [4].
We shall show below that the same is valid also if f is a homeomorphism of
E° | thus giving a partial positive solution to a problem raised in [3].

A problem of similar nature has arised for X being a unit sphere in E”
(1 £ n< o) and f: X - X a mapping preserving the angular distance
n/2 between the unit vectors (see [3]). Is f necessarily an isometry? Here the
answer turns out to be positive due to the theorems applied in the mathematical
foundations of quantum mechanics.

2. CONSERVATIVE DISTANCES AND ISOMETRIES
Let f: X — X be any mapping of a metric space X into itself. We shall call
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a nonnegative number / a conservative distance of f iff d(x, y) = [ implies
d(f(x), f(»)) =1 forall x,y in X.

Let X = E" (1 <n < o0). Generalizing slightly the problem of A. D. Alek-
sandrov and the problem raised in [3], we shall now consider a homeomorphism
f: X — X having a conservative distance / > 0. One has the following

Lemma 1. Let f: E" — E" (1 < n < oo0) be a homeomorphism with a con-
servative distance | > 0. Then the surface of any sphere of radius | is mapped
homeomorphically onto the surface of another sphere of radius 1.

Proof. Indeed, since / is f-conservative, any sphere S(a, /) = {x € E™: d(a, x)
= [} is transformed into the sphere S(f(a), /). As f is a homeomorphism of
E™ | this mapping is continuous and different points of S(a, /) have different
images in S(f(a), /). Moreover, the image S* = f(S(a,!)) = {f(x): x €
S(a, )} must be exactly equal to S(f(a),!). Indeed, let Z be the comple-
ment of S(a,/) and Z* the complement of S$*, i.e., Z = E"\S(a,!) and
Z* = E"\S*. Notice, that Z is disconnected (it is the sum of two disjoint
open sets, the interior and the exterior of the sphere S(a, /). While mapping
S(a,!) onto S*, the homeomorphism f must simultaneously map Z onto
Z* . Now, should §* c S(f(a),!) be a proper subset of S(f(a), /), its com-
plement Z* would be connected, which is impossible, since Z* = f(Z) and
Z is disconnected. Thus, S* = S(f(a), /). Q.E.D.

Theorem 1. Every homeomorphism f: E" — E" (3 < n < oo) with a nontrivial
conservative distance | > 0 is an isometry.

Proof. Under our assumptions, the restriction of f to any sphere S(a,/),
where a € E”, has a nontrivial conservative distance /. It corresponds to a
nontrivial conservative angular distance a = n/3 as the surface points x, y €
S(a,l) with d(x,y) = [ and the center of the sphere form an equilateral
triangle. If n > 3, the result of [4] implies that f maps the sphere S(a, /)
isometrically onto S(f(a), ). Since any two points x,y € E? (3 < n < o)
with d(x, y) < 2/ lie on a surface of a certain sphere S(a, /), this immediately
proves that all distances d < 2/ are conservative. By iterating the argument,
one sees that the distances d < 2.2/ are conservative, too, and by induction it
follows that every distance d > 0 is f-conservative. Q.E.D.

Remark. For any finite n > 2 the theorem follows as well from the result in [2].
The new element here is the validity of Theorem 1 when f is a homeomorphism
defined on an infinite-dimensional Euclidean space, thus solving a significant
part of a problem raised in [3].

Open Problems. Some physical questions originated by optics or by quantum
mechanics lead to the following concepts of nonexpanding or nonshrinking dis-
tances.

Definition. Let f/ be a mapping of a metric space X into itself. A nonnegative
number [/ is called a nonexpanding distance of f iff d(x,y) = [ implies
d(f(x), f(y)) <[ forevery x,y € X, and !/ is called a nonshrinking distance
of f iff d(x,y)=1[ implies d(f(x), f(y)) >/ forevery x,y€e X.

If X is a sphere of a radius r in a Euclidean space E” (2 < n < o0), the
existence of a nontrivial nonexpanding (or nonshrinking) distance / (0 </ <
2r) for a homeomorphism f: X — X implies the existence of a conservative
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distance, thus proving that f is an isometry [4]. For X = E” this implication
does not hold. Indeed, for conformal nonisometric transformations defined
on E" all distances are either nonshrinking or nonexpanding. An interesting
problem would be to find the structure of a mapping f: E” — E" that admits
simultaneously a nonshrinking distance d,- and a nonexpanding distance d, .
A question arises whether such a mapping must be an isometry?

3. EUCLIDEAN SPHERES AND THE CONSERVATIVE ANGLE 71.'/2

For X being a sphere in E” (2 < n < oo) a natural metric structure is
defined on X by the angular distances. The mappings that preserve the angular
distance 7/2 (i.e., orthogonality preserving) have been of particular interest for
the mathematical foundations of quantum mechanics. What is their structure?
Though the answer has been basically known for a long time, the last brick to
the proof has been only recently added [5].

For convenience, we shall represent X as the sphere of unit vectors in a real
Hilbert space H. Now, for any subset Z C X let Z+ denote the set of all
Xx € X orthogonal to all z € Z . As it is easily seen, Z C (Z1+)1.

The subsets Z for which Z = (Z+)* are of some special interest; they are
intersections of the sphere X with closed linear subspaces of H . For simplicity,
we shall refer to them further on as subspaces of X . Two subspaces Y, Z C X
are called orthogonal (denotedby Y1 Z) iff y1 z forevery ye Y and z€ Z.
The orthogonality of the subspaces of X corresponds exactly to the orthogo-
nality of the closed linear subspaces of H . For any two subspaces Y, Z C X
one defines the partial ordering relation “<” as the set theoretical inclusion, i.e.,
Y<Z iff Y CZ. The set L of all subspaces of X with ordering relation “<”
and with the mapping Y — Y+ is an orthocomplemented lattice isomorphic to
the lattice of all closed linear subspaces of H. Now let f: X — X be a homeo-
morphism with 7/2 being a conservative angle. As orthogonality preserving, f
induces a unique authomorphism of the orthocomplemented lattice L, which
will be denoted by the same symbol f. Assume now that 3 < dimH < +co.
Then, f must conserve not only the orthogonality (L) in L but also the an-
gles between the 1-dimensional subspaces (rays). This fact is a consequence of
the existence of some more general numerical invariants on lattices and ortho-
posets. Indeed, consider the set M of all g-orthoadditive probability measures
u: L — [0, 1]. Assume that for any X € L there exists at least one measure
1 € M for which u(X) = 1 (this turns out to be true for our lattice of sub-
spaces L). For any pair X, Y € L define now the quantity p(X, Y) as the
infimum on Y of all probability measures u taking the value 1 on X :

p(X,7) ,,(‘x“)il“(y)'

As an automorphism of L, f induces an invertible transformation of the o-
orthoadditive measures u € M into new such measures uo f~!, and since the
value of # on X coincides with the value of uo f~! on f(X), the infimum
p(X,Y) must stay invariant, i.e., p(f(X), f(Y)) =p(X,Y). If now X and
Y are two one-dimensional subspaces (rays) spanned by two unit vectors x, y €
H , then by the Gleason theorem [6] there is exactly one measure uy € M with
Ux(X) =1, and the infimum p(X, Y) becomes:

p(X,Y)=pux(Y)=|(x, »)?.
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Henceforth, the quantity |(x, y)|> must be invariant too, implying:

(3.1) (f(x), SN = 1(x, ¥

The following theorem can now be proved.

Theorem 2. Let f be a homeomorphism of the unit sphere X in a real Hilbert
space H (3 < dimH < oo0) that conserves the angular distance n/2. Then f
is an isometry.

Proof. Indeed, our mapping f defines an authomorphism of the orthocom-
plemented lattice L, which for 3 < dim H, implies (3.1). Now, in virtue of
Wigner theorem [7], which only recently has acquired a rigorous form [5], the
conservation formula (3.1) implies that f differs trivially from a certain linear
isometry operator I: X — X,

(3.2) f(x) = k(x)Ix

where /: X — X is an isometry and k(x) is just a real-valued function on X,
|k(x)] =1 for every x in X. Since I is continuous and f is a homeomor-
phism, k(x) must be continuous as well, which leaves only two possibilities, i.e.,
k(x)=+1 or k(x) = -1 everywhere on X . Thus, f(x)=Ix or f(x)=-Ix
everywhere on X , meaning that f is an isometry. Q.E.D.

Remark. Of course, Theorem 2, modulo aspects discussed by Sharma [5], has
been known in the foundations of quantum theory, but we have considered it
of some interest to bring methods of mathematical physics to understand better
a part of the mathematical Aleksandrov problem.
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