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A NOTE ON THE CONE MULTIPLIER

GERD MOCKENHAUPT

(Communicated by J. Marshall Ash)

Abstract. In this paper we study the convolution operator given on the Fourier

transform side by multiplication by

ma(x,z) = <t>(z)(l-\x\/z)l,        (;t,z)€R2xR,  a>0,

where <j> e Co°(l, 2). We will prove that ma defines a bounded operator on

L4(R3) if a > g . Furthermore, as a generalization of a result of C. Fefferman

(Acta Math. 124 (1970), 9-36), we will show that an (L2, LP) restriction
theorem for compact C°° submanifolds M c R" of arbitrary codimension

imply results for multipliers having a singularity of the form dist(x, M)a near

M.

Introduction

The purpose of this paper is to make some observations concerning the con-

volution operators Taf — ma*f where the multiplier ma has a singularity on

a finite part of the light cone and is given by

ma(x,z) = (j>(z)(l-\x\/z)a+,        (x,z)£R2xR, a > 0, </> € C0°°(l, 2).

It is conjectured that for fixed a, the operator Ta is bounded on Lp(Ri) in the

same p-range as the two-dimensional Riesz means of order a (see [17]). A well-

known theorem of de Leeuw, which roughly speaking says that by restriction
of a multiplier to any subspaces we obtain a multiplier for LP corresponding

to this subspace, gives us that Ta can be bounded only on the range where the

Riesz means of order a in two dimensions are bounded. This is the case for

a> j if l<p<oo and as shown in [2, 11, 12] if p - 4 for a > 0. By ana-
lytic interpolation of these two results one gets the full Lp boundedness range.

By using asymptotic estimates for ma one can see that ma gives a multiplier

for Lx if a > \. Clearly only the behaviour of ma near the finite part of

the light cone, K, influences the LP boundedness of the corresponding oper-

ator Ta . Therefore, we may think that our multiplier is given by the function

</j(x)dist(x, K)a, where </> G Cq° is a suitable cut-off function. In general it

is assumed that for multipliers of the form ^(x)dist(x, M)a, where M is a
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smooth compact hypersurface in R" the LP boundedness of the correspond-

ing convolution operator depends on the vanishing behaviour of the principal

curvatures on M. If M has one point xo , where all principal curvatures do

not vanish, then we expect that the corresponding multiplier gives a bounded

operator on the same (a, p)-range as in case where Af is a sphere in R" . In

this case the range cannot be greater since the Fourier transform of the multi-

plier vanishes in a conical neighborhood of the normal at xo of the same order

at infinity as the Fourier transform of the Riesz multiplier (see also [5]). If

M is the surface of a cylinder, where one principal curvature always vanishes,

then the corresponding operators essentially factor and its main part is a Riesz

mean of order a in one dimension lower. If M is a hypersurface in R3 and

one principal curvature always vanishes on M—the principle example here is

the light cone—the situation is more subtle than in the case of the cylinder and

Theorem (1.0) gives a first answer in this case. Lastly if M is a piece of a

hyperplane, i.e., all principal curvatures vanish, we have LP boundedness for

a > 0, 1 < p < oo. Thus one could expect that the more the principal cur-

vatures vanish the greater the LP boundedness range for a given a. This in

some sense will be established by Theorem 1.0, but this may not be the sharpest
result.

Further we will show a result for multipliers with a singularity of the form

dist(x, M)a , where Af is a compact C°° submanifold of R" of codimension

/ > 1, by assuming that an (L2, LP) restriction inequality holds for the Fourier

transform with respect to Af. The idea behind the proof is that we may use the

restriction inequality for M and for translates of M in normal directions at
points of M such that these translates of M fill out an open set. This method

is sharp in a sense that there are examples for every codimension in which we

get the optimal boundedness range (see [13]). For the cone multiplier ma in

R3 Theorem (2.0) gives us a result which is worse than (1.0). We mention
further that Theorem 2.0 gives us a result for hypersurfaces that are of finite

type at each point (see also [15] where an analog for Riesz means on compact

manifolds is proved), but as is known the (L2, LP) restriction inequality holds

in that case in a smaller range than, for example, in case of a sphere. The case

of infinite vanishing on subsets of M in higher dimensions is unsolved. Only

in two dimensions is there a complete answer (see [14]).

With respect to the notation we shall use the convention that C is a constant

that is not the same at each occurrence

Main result

For the finite part of the cone multiplier we will show

Theorem 1.0. If a> \ then ma gives a bounded operator on L4(R3).

For the proof we remark that it is sufficient to show that for a smooth bump

function <^ with support contained in

|x = (^'e,z)GR3|l<^<l + ^,   l<z<2,  -|<0<^j

we have

||^*/||4<C2*/V||/||4,
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where y > 0 is some positive number (for a similar reduction step see [7, 11]).

To show this inequality we make a further decomposition of the operator on

the Fourier transform side in the angular variable 6 . Let N = 2kl2,

Sm = {(x, z) = (reie, z) £ R3|0 g /„ = [^, ^±1] J ,

m = 0, ±1, ... , ±N,

Em = Sm n supp 4>k , and choose smooth bump functions y/m essentially sup-

ported on Em such that £m y/m = </>k and \d$dldyry/m\ < CaJ>yNaN2^ , for

all a, /?, y £ N, where C denotes a vector that lies in Em and £ is normal to

the surface of the cone inside of Em . The theorem will follow by establishing
the following three inequalities:

(i.i) ;>>«*/ <cnx" m^*/i2)
m 4 \ m J

(1.2) \Twm*fm\2\      <C(\o%ny \T\fm\2\

4 4

(1.3) (EI-^I2) <C(\ogNY'\\f\U,
\m ) 4

where in (1.3) /m = Xsm*f and y, 7' are certain positive constants. Inequality

(1.3) is proved in [8]. For inequality (1.2) we remark that, by the uncertainty

principle, y/m * f(x) is essentially dominated by the mean value Mmf(x) of

/ over a rectangle containing x and of dimensions I x N x N2 whose longest

side lies in direction (e""lN, -1), i.e., normal to Em . Therefore (1.2) follows
from the bound

supAV/-    <C(logA02l/l|2
m 2

for which we refer to [9]. A slightly weaker inequality, where the log N term

is replaced by CEN£, e > 0, can be obtained by modifying a little bit of the
argument in [4] for the Kakeya maximal function, i.e., instead of taking the

supremum over a discrete set of angles one takes it over all angles, and after

smoothing the rectangles we bound the supremum over the angles by an L2

Sobolev norm, an application of Plancherel's theorem then gives what we want

and this is sufficient for our purpose. It remains to show (1.1), which is an

inequality estimating the cancellation on the left side. Using a duality argument
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and applying Plancherel's theorem we get for the square of the left side of (1.1)

/    (JlVm*/)   gdx   =    /   V   y/mf*Wm'fgdx
JVy ' J   nZn\>

< /£i^*/i2 (E \(XEm+Em,gr\2)   dx
\m,m' J

< (l>m*/i2)        Eife^n2
\m / 4    \m,m- J ^

We are done if the following inequality is established:

(*) Y.^m+Em,(x)<CN   forallxGR3.
m,m'

To prove it, we first translate the situation along the z-axis so that the sets

Em lie between the planes z = j and z = - \ . A simple symmetry argument

shows now that it is sufficient to prove (*) for x = (r, 0, 0), 1 < r < 3.

It is also easy to see that if A, B lie in Em, Em>, respectively, then in order

to get A + B = x their z-coordinates must have different signs and the same

magnitude independent of m, m! . Let &(t) be the set of pairs (m, m') such

that there are points A £ Em , B £ Emi, with A + B = x, and the z-coordinate

of A is t. It remains to show

^ = #i       (J       &>(t)\<CN.
[(€[-1/2,1/2] J

The orthogonal projection onto the x, y-plane of Em n {z = t} is of course

contained in the rectangle

Rm(t) = eim'N{l + t + R},

where R = {x + iy\ \x\ < \/N2 , \y\ < \/N} . It follows that

Rm(t) + Rm,(-t) c 2,<(—W { (cos^ + %^[-l, 1])

(   .   m- m'      4 r   ,    ,,\ 1

By setting k - (m + m')/2 and / = (m-m')/2 and approximating the trigono-

metric functions to second order we see that for (r, 0) to lie in Rm(t)+Rm<(-t)

it is necessary that

(1) Ar2(r-2) + /2-rA:2Go7[-l, 1],

(2) rfc-2//e8[-l, 1].

Condition (2) is not significant since if t £ [—j, 5] varies then the strips

defined by (2) cover a big sector of Z2 n [-N, N]2 determined by r. We

are left with condition (1) which says that the pairs (k, I) £ Z2 n [-N, N]2
we have to count lie at a distance at most 4 from the hyperbolic curve / =
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\]rk2 + 16 + (2 - r)N2. Since the length of this curve in [-N, N]2 is « N we

get ^ < CN.   D

It is not hard to see that inequality (*) is sharp, therefore, the method above

cannot lead to an improvement of (1.1).
Let us remark that by simple arguments Theorem (1.0) is equivalent to the

boundedness on L4(R3) of the convolution operator defined by the multiplier

Ma(x,z) = e-z(z-\x\)a+

whose Fourier transform is given by

A?Q(x, z) = (1 + /z)-a[(l + iz)2 + |x|2r3/2.

Obviously Ma has its singular behaviour near the light cone z = \x\ and

we see that Ma has a quite subtle cancellation property. As remarked in the

introduction we have ma £ LX(R?) for a > \ . This is easily seen from the

corresponding property of Af0. We also remark that it can be shown by a

rotation method that for a > ^

Ka(x,z)=(l-^j   ,        (x,z)gR2xR,

gives a multiplier for LP(R3), 1 < p < oo . To see this let us first explain it for

the Riesz multipliers. Let fa G C°°(R2) be a bump function supported on a

rectangle of size 8 x V8 which lies tangential to the unit sphere Sx . Obviously

/      Mgx)dg = V8y/s(\x\)
JS0(2)

where yig is a radial bump function supported on a spherical shell of width 8 .

Of course, 4>g is an L'(R2) multiplier with norm independent of 8 hence yig

is an LX(R2) multiplier with norm 8~xl2 and therefore an argument used in

the proof of (1.0) gives that (1 - |x|)+ is a multiplier for LX(R2) if a > \ .
The same method works for Kn . Here we consider at first for g £ SO(2) the

homogeneous function <fo(^), (x, z) £ R2 x R, and see by Marcinkievic's

multiplier theorem that <f>g gives a multiplier for Lp(Ri), 1 < p < oo, with

norm independent of 8 and we conclude as above that Ka gives a multiplier

for Lp(Ri), 1 <p < oo, and a > 1/2.
Let us now show that an (L2, Lp) restriction inequality for a compact C°°

submanifold Af always implies a result for multipliers with a singularity of

the form dist(x, M)a near Af. The method is similar to that of [11, 16].

Assuming that our multipliers have only a singularity near M means that we

cut the distance function with a suitable tf> £ Cfi° so that our multiplier is given

by ma(x) = 0(x)dist(x, M)" , where the support of <fi is sufficiently small so

that ma is C°° away from M, i.e., in case of M being the unit sphere we

avoid a discussion of the origin.

Theorem 2.0. Let M be a submanifold of Rn of codimension I, and assume

the restriction inequality for the Fourier transform:
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holds for 1 <p<Po- Then ma is a multiplier for Lp(Rn) if a> n\\/2-\/p\-

1/2 and 1 <p<Po-

Remarks. For submanifolds of codimension / it follows by generalizing

A. Knapp's homogeneity argument that the above restriction inequality can only

hold for po < 2(n + l)/(n + 31).
In [13] we proved an optimal (L?, LP) restriction inequality for certain

homogeneous submanifolds using sharp asymptotic estimates for generalized

Bessel functions given in [6] and using the asymptotic expansion in [1] we

showed that Theorem 2.0 is sharp in these cases. This is done by checking

the asymptotic behaviour of ma in a conical set and by using the fact that

for a compactly supported multiplier for LP its Fourier transform has to be

in LP . The SO(2) x SO(«)-orbit M = {(x, y) £ Rn x R»| |xf + |y|2 = 1,
W2M2 _ (x • y)2 = 2} is such an example in case of 2 codimension.

For certain exponents a it could be that our multiplier has no singularity,

e.g., if a = 2. In that case one should introduce complex powers to maintain

the singular behaviour of ma near M.

For the proof of Theorem 2.0 we consider at first the multiplier ma near a

suitable small neighborhood W of a point xq £ M, such that on W we have

a nice parameterization. Since M is compact, we can reduce the things to a

local consideration. So we cut ma with a suitable Cq° function supported on

W. We may also assume that Xo = 0 and the tangent plane TXo M is given by

{(X! ,...,*„)€ R"|x„_/+1 = • • • = xH = 0} 2 W-i. Let

y:R"-' DU3y^(y, y(y)) £ M,

where y £ C°°(U, R1), y(0) — 0, U open, a parameterization of Af near x0.

Then
T: (y, v) ^ (y, v + y(y))

defines a local diffeomorphism of an open set U x V c R"_/ x R' containing

the origin of R" onto t(U x V) that contains W as we may assume. This

simply follows from the fact that det V — 1. Let 0 be a Cq° function on R'

such that
,. .      fl    for 0 < |v[ < 1,

^ = l0   forM>2

and let <f>k(v) = <t>(2kv) - <p'(2k+xv). Of course we have suppt^ = {v £

R'll/2^1 < |u| < 1/2*-1} and 2Zk>o<t>k(v) = 1 for |v| < 1. Let »F be a func-
tion in C^°(W) that cuts ma as mentioned above, then supp*F c Y(U x V),

and we may assume that V c {\v\ < 1} c R'. We set for y G U and v £ V :

yik(x = T(y,v)) = ^(T(y,v))ct>k(v).

Then yik is supported in Bk = {v + Af c R"|l/2/c+1 < \v\ < 1/2^"'} Dsupp^

and we have

ma(x) = Y, yik(x)ma(x) = J2mk

where \d^mk\ < C2kW , using |<9^dist(x, Af)a| < cdist(x,M)~W on Bk .

This inequality for the derivatives of mk implies that the Fourier transform of

mk is essentially supported on a ball of diameter 2i(1+c), e > 0. Modulo negli-

gible operators it is then sufficient to show that for a cube Q CR" of side length

4 • 2fc('+£) the operator Tkf = xQmk * f has the norm 2^xf2-x^-'^Cs2Ek ,
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e > 0, on LP(Q*), here Q* denotes the doubling of Q. By using a lemma of

M. Christ [3, p. 18] the matter is reduced to the inequality

l|r,/||^<C2-(a+//2)fc||/||2.

To prove this inequality we first compute, setting v = (0, v) £ R"_/ x R',

\Tkf(t)\ = \jmk(x)f(x)e-it'xdx

= \f   f mk(Y(y, v))f(Y(y, v^'^^ dydv
\JBk Ju

=   f e-"'" f mk o Yf o Ye-il'ny •0) dy dv
JBk Ju

< [    [ (mkf)oYe-u^y^dy dv .
JBk   Ju

Now the restriction inequality for the Fourier transform with respect to Af
comes in. By dualizing it we get

I / (mkf) o re-'^^ dy    ,      < C\\(mJ) o Y\\mu).
\\JU L"o(R»)

Noting that Bk c {x £ R"|ci/2fc+1 < dist(x, Af) < c2/2k~x} , where cx, c2 are
suitable constants, we obtain

\\Tkf\\P' <C f \\mk(Y(.,v))foY(-,v)\\LHU)dv
JBk

i /?

< C\Bk\1'2 (J ju\mk(Y(y, v))\2\f oY(y, v)\2dydv^j

<C\Bk\x/22~ak^ ju\foY(y,v)\2dydv^

1 I")

< c2-*('/2+a» (f   f \foY(y, v)\2dydv\

< C2-*('/2+a> ( f \f\2)
\Jr(Bkxu)      J

< C2-fcW2+«)||/||i2(R»).   D
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