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NORMS ON UNITIZATIONS OF BANACH ALGEBRAS

A. K. GAUR AND Z. V. KOVARfK

(Communicated by Palle E. T. Jorgensen)

Abstract. Equivalence of various norms on the unitization of a nonunital

Banach algebra is established, with bounds (1 and 6exp(l)) uniform over the

class of such algebras. A tighter bound, 3, is obtained in C*-algebras for ele-

ments with Hermitian nonunital parts.

The algebra norm || • || on a nonunital Banach algebra A can be extended to
an algebra norm on the unitization A+ in many ways. Proposition 4.3 in [3]

states that among these extensions, the /i-norm

||Ae + a||i = |A|-(-||a||

is maximal and the operator norm

\\Xe + a\\op = sup{||Ax + ax\\ : \\x\\ < 1}

is minimal, provided that it does extend || • ||, i.e., that || • || is a regular

(= operator) norm.

In the latter case, A+ is complete under both || • ||, and || • ||op, so by the

"two-norm lemma" [2, II.2.5] these two norms are equivalent; the pure existence

nature of the lemma does not yield an explicit bound M in || • ||i < M\\ • ||op

and such a bound seems to depend on the algebra A .

The present theorem establishes uniform equivalence of the two unitization

norms over the class of nonunital Banach algebras with regular norms.

Theorem. For every nonunital Banach algebra A with unitization A+ and with

regular norm, and for every X £ C and a £ A, we have

\\Xe + a\\op < ||/te + a||i < (6exp 1)||A^ + a||op.

If A is a C*-algebra, a £ A is hermitian, and X is complex then

\\Xe + a\\x <3||Ae + a||op

and the constant 3 is best (minimal) possible.

Proof. In a general algebra A with a regular norm, we have an extension of the

classical inequality for the numerical radius v(a) [1, Theorem 4.1]:

v(a) < \\a\\ < (expl)v(a).
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Without loss of generality, assume that a ^ 0. We know that the closure K of

the numerical range of a in a nonunital algebra contains 0; our first task is to

estimate v(X + a) from below: From the geometry of the complex plane we see

that the diameter d of the compact K is realized as the distance d = \a — B\

with a, B £ K, and comparison with the special case Xo = -(a + /?)/2 leads

to

v(Xe + a) = maxiJA + £,\:£,eK}>\d.

Also, since 0 G K, we have d >v(a). Altogether,

v(Xe + a) > \v(a).

Now we split estimates into cases \X\ < 2||a || and \X\ > 2\\a\\. The former case
gives

||Ag + fl||op> v(a)/2 >      v(a)/2      =      1     .

\X\ + \\a\\   ~ 2\\a\\ + (exp l)v(a) ~ (3expl)v(a)     6expl'

the latter case \X\ > 2\\a\\ gives, using the triangle inequality and the fact that
the fraction in the middle increases with \X\,

\\Xe + a\\op     \X\-\\a\\      1

|A| + |N   -|a| + H-3-

We conclude that for all complex X,

||A + fl||i <(6expl)||A + a||op.

Now the C*-algebra case: The closure of the numerical range of a Hermitian

a is the smallest real interval [a, /?] containing the spectrum of a, and for all

complex X we have

p.e + a||. = |A| + max(|a|, \B\),

\\Xe + a\\op = max(|A + a\,\X + B\).

The expression to minimize is

max(|A + a|,|A + ^|)

q{ >       |A| + max(|a|,|/?|)  •

Without loss of generality, we assume that a < 0 < B and y = (a + B)/2 > 0

(recall that 0 is in the spectrum of a); otherwise we replace a with -a .

From now on, this is a problem about complex numbers. We split it into

four cases:

(CI) A real,
(C2) A not real, 3U > -y,
(C3) A is not real, SRA < -y,
(C4) A not real, 3tt = -y.

In (CI) q is continuous, piecewise monotone with breakpoints —B, 0, -y,

-a, and respective values,

B + \a\      1 §__. B + \a\       1 B + \a\

2$     -2' B        ' 3j8-|a|-3' B + \a\

and q approaches 1 as \X\ —» oo. The best we can say about q, therefore, is

q>\, attained when a = 0.
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Case (C4). Write, for symmetry, a — y - p < 0, B = y + p>0,so that

p = (B - a)/2. Also, we substitute p = -y + >Jy2 + v2 (note p > 0), so that

v2 = p2 + 2py. To prove that Q(v) = q(-y + iv) > \ , write

Q(v) = _!i±4_ = Vp2 + Vl
^  '     \X\ + max(M ,\B\)      ^T^A + y + p'

2      _\_ 9(p2+p2 + 2py)-(p + p + 2y)2
^[)    9 9(p+p + 2y)2

= 2(p-p-y)2 + 6(p + y)(p-y + p) >Q
9(p + p + 2y)2

since both p + y > 0 and p-y+p = \a\+p>0.
Cases (C2) and (C3). Except on the set {A|3tA = -y or A = 0}, q has a

gradient

VqW=(i±jm±m^z^jm form>-y,

(X + a)(\X\ + P)/\X + a\-\X + a\X/\X\

(\M + P)2

Remark. The bound 6exp 1 is not the best; by splitting at (1 + l/(2exp l))||a||

instead of at 2||a|| in the proof, we could reduce the bound 6expl to 1 +

4 exp 1, but we suspect that even this can be improved.
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