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Abstract. We study the relationship between intersection theory for analytic

varieties and membership of w-tuples of Toeplitz operators in the Cowen-

Douglas class Bm(il). Connections with holomorphic mappings are discussed.

1. Introduction

In this note we provide evidence that a close relationship exists between in-

tersection theory and membership in the Cowen-Douglas class Bm(Cl) (see [6,

7]) of certain n-tuples Tv of Toeplitz operators with bounded antiholomorphic

symbols w , acting on the Bergman space over a pseudoregular bounded domain

ACCV Here a pseudoregular domain is one on which the d -Neumann opera-

tor N is compact in the L2 topology (see [17]). (Observe that Bell's Condition

R is necessary for pseudoregularity; see [1].)

The above relationship stems from the fact that such w-tuples Tv belong

to the class Bm(Q.), where Q is a bounded domain in C" and m £ Z+,

if and only if y/ £ H°°(A) is an m-analytic cover of ft, i.e., ft C lj/(A), and

^ : A = y/~l (ft) -* ft is a proper mapping of multiplicity m . The proof of this

result was given in [14]. In the course of this proof, an important property of

proper holomorphic mappings was rediscovered (see the proof of [14, Theorem

3.5]):

Let (p : A —► ft be a proper holomorphic mapping of multi-

plicity m, so that Card(0-1({u>})) = mVw £ 4>(Sf), where
3? = {z £ A : det(/>'(z) = 0} is the critical manifold of <p. For
each z G A let cf(z) be the algebra of germs of holomorphic

functions in neighborhoods of z and ^(z) be the ideal in
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cf(z) generated by the components of <p - (p(z). Then

(*) m(w)=   Y,  dim[cf(z)/J^(z)],       wGft,
<j>(z)=W

is constant on ft and hence coincides with m .

Property (*) for proper holomorphic mappings (at least for compact complex

manifolds) is well understood among algebraic geometers and is a generalization

of a theorem of Remmert and Stein (see [16, Theorem 15.1.9]); a treatment of

the result may be found in [10, Corollary 3.13, Proposition 3.20] and [5, §§10.2,
12.6]. We shall prove it here and provide a flow chart of appropriate references.

We shall also present a simplification of [14, Theorem 3.5]. We point out that

in [14], property (*) is proved using operator theoretic techniques. We believe

that the arguments provided here are more natural.

Actually, condition (*) is essentially equivalent to another interesting prop-

erty of proper holomorphic mappings brought to light by the above-mentioned

connection between the Cowen-Douglas class and intersection theory. To put

the hypotheses of our theorem in perspective, we note that the papers [13, 20]

provide examples of pseudoconvex domains on which the 9-Neumann operator

N is noncompact in the L2 topology.

Theorem 1.1. Let U be a smoothly bounded, pseudoregular domain in C" , i.e.,

a pseudoconvex domain on which the d-Neumann operator N is compact in the

L2 topology. Also, let H2(U) be the Bergman space on U, i.e., the subspace of

L2(U) of holomorphic functions on U. Given a bounded holomorphic mapping

(p : U —> C" whose components are in CX(U), let T^ be the n-tuple of multipli-

cation operators by the components of 4> acting on H2(U). For a given domain

ft c C", the following conditions are equivalent:
(1) ft C <p(U) and cp: A = <p~x(£l) —► ft is a proper mapping of multiplicity

m.

(2) For each w g ft, the linear space Ran(T^_w) defined by

Ran(^_„,) = j J2(<pj - Wj)fj : f £ H2(U), 1 < j < n I

is closed in H2 and has codimension m.

(3) For each w £ ft the linear space Ran(T^,_w) is closed and the map

w —> E^w) = H2(U)/Ran(T<t,-.w) defines an m-dimensional holomorphic vec-

tor bundle E^ that gives a natural holomorphic vector bundle structure to the

assignment

"3IDH    0   Cf(z)/^(z).

4>(z)=w

Corollary 1.2. Let U and ft be two (smoothly bounded) pseudoconvex do-

mains in C" , and assume that U is pseudoregular. Also, let <p : U —> ft be a
proper holomorphic mapping of multiplicity m. Then the map w -* E^w), w £

ft, defines an m-dimensional holomorphic vector bundle over ft.

Remark 1.3. (a) There are several important examples of pseudoregular do-

mains.  For example, domains of finite type are pseudoregular.  Examples of
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domains that are not of finite type in general, but that are still pseudoregular,

are domains satisfying Catlin's property P (see [4]). Typically, pseudoconvex

Reinhardt domains with no analytic disks in their boundaries are pseudoregular

(see [21, 19]). On the other hand, the new work of Boas and Straube [3] shows

that smooth convex domains satisfy Condition R and hence are pseudoregular.

(b) It is natural to ask the following question: with <p : U -* ft as in the

above corollary, what is the behavior of E^w) as w approaches some point

in 9ft? As pointed out previously, U satisfies Bell's Condition R, i.e., the

Bergman projection P : L2(U) —> H2(U) leaves C°°(U) invariant. It follows

that cp can be extended smoothly to dU (see [2] or [8]). (Note that Ran(r^,_U))

is no longer closed when w £ dU. In fact, we suspect that, in most cases,

Ran(r0_w) is dense in H2(U) when w £ dU.) In case the boundaries of U

and ft are real analytic and pseudoconvex, then 4> continues holomorphically

past the boundary (see [9]). Formally, the vector bundle E^ seems to depend

on the Hilbert space H2(U), but that turns out not to be the case. Here is
why.

Let <j>: A —> ft be a proper map. Consider the direct image sheaf 4>»cfA. The

fibre at a point y G ft is

(<rWA)>. »«%., i^a.y/m) =    0   (tfA>x ®(fily (cfn,y/my))
xz4>-'{y)

=      0    (&K,xl&K,xmy) =      0     (<?A,*//(0-0(*))).

By Criterion 2 in [11, p. 91], the sheaf </>*cfA is locally free. That is, it is the
sheaf of germs of a holomorphic vector bundle. This gives the assignment

y-+ © ^a,x//(0-0W)
x^-xy

a natural structure of holomorphic bundles that is independent of operator-

theoretic considerations. Therefore, when 0 continues holomorphically past

the boundary, the vector bundle (whose associated sheaf is <j>*cfA) continues

holomorphically past the boundary.

Thus we think of ^ as a proper mapping of a larger domain that properly

contains U. As a result, we see that it; tending to d U is no different from w

lying in the interior of U and the statement of (b) holds even when w lies in

ou.
However, we must stress that the continuation of E^ that we have specified

is as a holomorphic vector bundle. The utility of E^ in Theorem 1.1 is as

a Hermitian vector bundle (see [16]). Thus, at this writing, we do not fully

understand the boundary behavior of E^.

2. Intersection numbers and multiplicity

Definition 2.1. Let f £ cf(0) be such that f(0) = 0, I < j < n, and assume
that {0} = n>=i Vi > where Vj is the divisor associated with f, 1 < j < n.
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Given g g tf(0), the residue of the meromorphic form

_ g(z)dzx A dz2 A • • • A dzn

is defined for a sufficiently small e > 0 by

Res(a, L°)= j   a,
Jrc

where T£ is the n-cycle {z e C : \fj(z)\ = e, 1 < j < n} oriented positively

in the standard fashion (see [12, p. 649]).

Let B(z) be the Bochner-Martinelli kernel, i.e., B(z) = n(z) A co(z), where

co(z) = dzx A • • • Adzn

and
n

n(z) = Y(-l)J-x-^dzxA---/\dzj_x Adzj+X A---Adzn.

j=\ LZJ

Also, let y be the Cauchy kernel, i.e.,

/  x        oj(z)

'<z) = rc^'
Lemma 2.2 (The Degree Lemma). Let F = (fx, ... , fn) be such that f £

cf(0) and zero is an isolated zero of F. Let Bc be the ball with center 0

and radius e. Then, for e sufficiently small, we have

(2ni)-n Res(F*y, 0) = -^- f   F*0 = deg(F, 0),
(2m)n JaBc

where deg(F, 0) denotes the degree of F at zero and C„ > 0 depends only on

n.

Proof. If F is nondegenerate then this is little more than a change of variables.

The degenerate case requires an extra argument. It uses the ideas of [GH,

pp. 651, 666]. We shall not provide the details here.   D

Lemma 2.3 (The Residue Lemma). Let (p: A —* ft be as in Theorem 1.1. Fur-

ther, let Bc be a ball in C" such that Bt c ft and A'cc A be a smoothly
bounded subdomain of A such that tp~x(Be) C A'. Then, for every w £ BE, we

have

(2ni)n  Y,   Res(Py(--w),z) = Cn [   <i>*B(--w).
4>(z)=w JdA'

Proof. This is an exercise with Stokes's theorem. See [12, p. 656].   □

Lemma 2.4 (The Intersection Number Lemma). Let §: A —► ft be as in Theo-

rem 1.1. Then, for every z £ U,

deg(0 - <f>(z), z) = dimc[^(z)/J^(z)].

Proof. There is an elegant discussion of this result in [12, pp. 669-670]. The

formula comes from relating the topological definition of intersection number

to the algebraic definition.   □
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Theorem 2.5 (The Multiplicity Theorem). Let <fi: A —> ft be as in Theorem
1.1, and let. Be be as in Lemma 2.4. Then for every w £ Be, we have

(2ni)n J9A,

In particular, m(-) is a continuous function on ft and hence coincides with the

multiplicity m of <f>. (Thus, in particular, property (*) from § 1 holds.)

Proof. This follows from Lemmas 2.2, 2.3, and 2.4.   □

3. The Cowen-Douglas class

For ft c C a connected open set, the Cowen-Douglas class Bm(Sl) is de-

fined as follows: Let %? be a Hilbert space and S?(%?) be the bounded linear

operators on %f. An element T £3'(%?) lies in 5m(ft) if

(1) ftCaCT);
(2) {J-<o)MT = Mr   VwGft;
(3) \Jw€ater(T-co)=jr;
(4) dim ker(T - a) = n   Vw G ft.

Here a(T) is the spectrum of T.

Let ft be a bounded domain in C". Any of the equivalent conditions given in

the next proposition for an n -tuple T satisfying the hypotheses will guarantee

that T* is in the Cowen-Douglas class Bm(Q.) (see [6; 18, Theorem 3.4]). As

we shall see below, such hypotheses are automatically satisfied in our situation.

Proposition 3.1. Let %? be a (separable, infinite-dimensional, complex) Hilbert

space and T be a commuting n-tuple of operators on %? such that

span^gnKeiKr-u;)*]

is dense in %?. Then the following conditions are equivalent:

(a) The linear space Ran(T -w) is closed and has codimension m for every

w £ ft.
(b) Zero is an isolated point of a(\(T - w)*\) for every w £ ft, and the

spectral projection P(w) corresponding to {0} is a continuous function of w,

with Rank[.P(iu)] = m for every w £ ft.   Here we have used the notation

isi = (e;=1w/2-
(c) In addition to property (b) above, we have w —» P(w), w £ ft, defines an

antiholomorphic vector bundle over ft.

Proof. See [7, Theorem 2.2; 18, Theorem 3.4].   □

Theorem 3.2. Let U be a smoothly bounded pseudoregular domain and </>: U —>

C" be a holomorphic mapping that extends continuously to dU. Also, assume

that ft is another bounded domain such that ft C (p'(U). Then the following

conditions are equivalent:

(1) T; is in Bm(Q).

(2) <f>: A = <f>~x(£l) —► ft is a proper mapping of multiplicity m.

Proof For (a) => (b), let {zk} be a sequence in A such that zk -+ zo G dA.

Assume, seeking a contradiction, that <p(zk) -* wo £ ft. Since ft n are(T^) = 0,

because T£ £ Bm(Q), we see that T^W(> is essentially right invertible; so by [14,
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Proposition 2.2], <p-wo is bounded away from zero near d U. This means that
{zk} cannot have any limit point in dU, and hence z0 £ U. By continuity

of 0 on U, w0 = (j>(zo) ■ Therefore, z0 G (j>~x({w0}) c A, which contradicts

zq £ dA. It follows that </> is proper. Now, let w £ ft be a fixed noncritical

value of <j>, i.e., w $. §(%?), where 3f is the zero set of the Jacobian of cp".

Let X - 4>-x({w}) and k(-, •) be the Szego kernel of U, i.e., the reproducing

kernel of H2(U). Since k(-, z) e Ker[(r^,_w)*] for every z G X, we see that

deg(</>) = Card(X) < dim[Ran(r0_U))-L] = m.

The opposite inequality follows as in the proof of [14, Theorem 3.5].

For the proof that (b) => (a), assume that <f> is an w-analytic cover of ft.

By [17, Theorem 2.3] it follows that a(Tz) = U and ae(Tz) = dU. Since Tz
is essentially normal (because U is assumed to be pseudoregular, see again [17,

Theorem 2.3]), 7^ is also essentially normal, and hence

4>(dU) = ae(T<f>) = are(T^).

Since ft C </>(£/), we deduce that T^,_w is essentially right invertible for every

w £ ft. This means that Ran(T^,_w) is closed and

p(w) = dim[Ran(^_t(;)-L] < oo,

for every w £ ft. Let w £ ft \ <p(3?). Then an argument similar to one given

above (using the Bergman kernel) yields

m = Card(</r'({w})) < p(w).

The opposite inequality is proved employing an argument used in the proof of

(b) ^ (a) of [14, Theorem 3.5]. By Proposition 3.1, T* £ Bm(Q).   n

Proof of Theorem 1.1. (a) =^ (b) follows from Theorem 3.2.

(b) =$> (c) follows from Proposition 3.1, except for the last assertion (i.e., the

fibre isomorphism statement). The proof of that fact uses an argument identical

to one given in the proof of [14, Theorem 3.5]. _

In order to proof that (c) => (a), note that cr(7^) = <t>(U) because we are

assuming that </> G CX(U) (see [15, §4]). Since ft n are(T$) = 0, because

7^ G 5m(ft) (so that r^-u, is right invertible for every w £ ft), and d<p(U) c

are(T^) by [14, Proposition 2.2], we deduce that ft c (f>(U). Now the desired

conclusion follows from Theorem 3.2.   □
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