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Abstract. A module M over a ring R is said to satisfy (accr) if the ascending

chain of residuals of the form N.B C N: B2 C N: B* C ■■■ terminates

for every submodule N and every finitely generated ideal B of R. A ring

satisfies (accr) if it does as a module over itself. This class of rings and modules

satisfies various properties of Noetherian rings and modules. For each of the

following rings, we investigate a necessary and sufficient condition for the ring to

satisfy (accr): polynomial rings, power series rings, valuation rings, and Priifer

domains. We also prove that if R is a ring satisfying (accr), then every finitely

generated /^-module satisfies (accr).

0. INTRODUCTION

A module M over a ring R is said to satisfy (accr) if the ascending chain

of residuals of the form N: B C N: B2 C N: B3 C ••• terminates for every

submodule N of M and every finitely generated ideal B of R. A ring sat-

isfies (accr) if it does as a module over itself. It is known that an /^-module

M satisfies (accr) if and only if the ascending chain of submodules of the form

N: b C N: b2 c N: b3 c ■■■ terminates for every submodule N of M and

every element b of R [11, Corollary to Theorem 1, p. 306]. The class of

rings and modules satisfying (accr) is very large. It contains Noetherian mod-

ules, modules over Artinian rings, and more generally, modules satisfying the
ACC on colon submodules [8], Laskerian modules, modules over perfect rings,

zero-dimensional rings, one-dimensional domains, etc. Rings and modules sat-

isfying (accr) have been investigated in [11]. One of the most interesting facts

about this class of rings and modules is that they enjoy various properties of

Noetherian rings or modules. In particular, coherent rings satisfying (accr) be-

have like Zariski rings if they are equipped with certain ideal-adic topologies

[11, Proposition 8, Theorem 8, Corollary to Theorem 9].

The purpose of this paper is to explore more rings and modules satisfying

(accr), in particular, non-Noetherian coherent rings satisfying (accr). Firstly, for

each of the following rings, we investigate a necessary and sufficient condition
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in order that the ring satisfies (accr): polynomial rings, power series rings, valu-

ation rings, and Priifer domains. Secondly, we study finitely generated modules

over rings satisfying (accr).

In §1 we discuss that a polynomial ring R[x] or a power series ring R[[x]]

satisfies (accr) if and only if R is Noetherian (Theorem 2). In §2 we prove

that a valuation ring satisfies (accr) if and only if fl^liC^") = (0) for every

nonunit b of the ring (Theorem 3). This implies a series of corollaries. For

example, we have that a Priifer domain D satisfies (accr) if and only if D has

(Krull) dimension at most 1. Thus, every almost Dedekind domain satisfies

(accr). It follows that every Priifer domain of dimension one is a coherent ring

satisfying (accr) that is not necessarily Noetherian. The question asking whether

every finitely generated /?-module satisfies (accr) if R satisfies (accr) has not

been answered yet. In §3 we finally prove that the answer to the question is

affirmative.
Every ring in this paper is commutative with identity and every module is

unitary. For definitions not given in the paper the reader may refer to [11].

1. Further properties of modules and rings that satisfy (accr)

In [11] various properties of modules and rings that satisfy (accr) were dis-

cussed. In this section, we investigate further properties of such modules and

rings. We are also concerned about relationships between rings satisfying (accr)

and other Noetherian-like rings.
Let F bea submodule of an /?-module M and T the set of all those

submodules K of M that properly contain F. We say that F is sheltered if

the intersection f]K€TK also properly contains F ([13, p. 27] or [5, Exercise

18, p. 110]).

Proposition. Let M be an R-module satisfying (accr). Then every proper sub-

module N of M has a [finite or infinite) primary decomposition N — f|/e/ Qt,

where each Qj is a primary submodule.

Proof. It is known that every proper submodule N of any .R-module is an

intersection f]i€lQi of a family of sheltered submodules Qj ([13, Lemma 4.2,

p. 27] or [5, Exercise 18, p. 110]). Since every sheltered submodule of a module

is irreducible and every irreducible submodule of a module satisfying (accr) is

primary by [11, Proposition 5, p. 307], N = f]i€l Qi is a primary decomposition

of N.
Let / be an ideal of a ring R and comp(/) be the set of prime ideals

of R that are minimal over /. i? is said to have FC if comp(7) is fi-

nite for every ideal / of R. Next, let S(I) denotes the set complement of
U{p: p 6 comp(/)} in R. Then / is said to have finite ideal-length if the

ring RS(i)/IRs{i) is an Artinian ring. R is said to have finite ideal-lengths if

each ideal of R has finite ideal-length. It was shown in [3, Proposition 1.3, p.
2683] that R has finite ideal-lengths if and only if R has FC and satisfies the
ACC for p-primary ideals for each prime ideal p of R. Following Beachy and

Weakley [3], we say that R is piecewise Noetherian if it has finite ideal-lengths

and has the ACC on prime ideals. Clearly, every Noetherian ring is piecewise

Noetherian and every piecewise Noetherian ring has Noetherian spectrum.
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Theorem 1. Let R be a ring such that each nonzero element of R belongs to

only finitely many maximal ideals of R. Then R is Noetherian if and only if
R is a piecewise Noetherian ring satisfying (accr).

Proof. Suppose that R is a piecewise Noetherian ring satisfying (accr). Then

every maximal ideal of R is finitely generated by [3, Proposition 2.2, p. 2689],

and so R is locally Noetherian due to [11, Corollary to Theorem 4, p. 312].

Now we can conclude that R is Noetherian [2, Exercise 9, p. 85].

A ring R is called a ZD-ring if the set of zero divisors on the i?-module

R/A is a finite union of prime ideals for each ideal A of R. Clearly, every

Laskerian ring is a ZD-ring. Heinzer and Ohm [9] proved that a polynomial

ring R[x] is a ZD-ring if and only if R is Noetherian, and hence the conditions

Noetherian, Strongly Laskerian, Laskerian, and ZD are equivalent in R[x].

Similarly, Gilmer and Heinzer [7] proved that a power series ring R[[x]] is

Laskerian if and only if R is Noetherian (but R need not be Noetherian if

R[[x]] is a ZD-ring). We remark that Radu [13] also gave a very simple proof

to show that if R[x] (resp. /?[[*]]) is Laskerian, then R is Noetherian. His

proof uses the fact that Laskerian rings satisfy (accr), so it also proves the next

Theorem 2. It is worthwhile to introduce the proof here.

Theorem 2. R[x] (resp. R[[x]]) satisfies (accr) if and only if R is Noetherian.

Proof. It is enough to prove the "only if part of the theorem. Assume, to the

contrary, that R[x] satisfies (accr) and R is not Noetherian; let /n C I\ C 72 C

• •• be an ascending chain of ideals of R. Let J be the ideal of R[x] consisting

of all polynomials of the form / = YH=o aix' > where a, e 7, for every i =

0, \, ... , n and n s Z+ . Then we obtain the following nonterminal ascending

chain of ideals of R[x]: J : (x) Q J : (x2) c J : (x3) c • • • c J : (*') C • • • . In
fact, if a e 7,-+i - I,, then ax'+l e J but ax' £ J. Thus a e J : (xi+l) but
a $ J : (x'); therefore, / : (x') g J ; (jc'+l) for every / e Z+ . In an analogous

way, we can prove the theorem for R[[x]] (cf. [13, Proof of Theorem 8.1,

P. 79]).

2. Arithmetical rings satisfying (accr)

A valuation ring (or a generalized valuation ring) is a ring R that satisfies

one of the following three equivalent conditions:

(i) for any two elements a and b, either a divides b or b divides a;

(ii) the ideals of R are linearly ordered by inclusion;

(iii)   R is a quasi-local ring and every finitely generated ideal is principal.

We shall denote a valuation ring R with the maximal ideal m by (R, m).

Theorem 3. A valuation ring (R, m) satisfies (accr) if and only if {~^=x(bn) - (0)

for every b e m .

Proof. The necessity follows from [11, Theorem 3, p. 309]. Conversely, let

{A : bk}keZ+ be an ascending chain of ideals, where A is an ideal of R and

0 ^ b 6 m. Firstly, we consider the case that A / (0). If b e A, then

clearly A : bk - R for every k e Z+ . On the other hand, if b $ A then
A g (b). Since A ^ (0) and D^=i(^") = (0)» there must exist a positive

integer X such that A C (bk) but A <£ (b*+[). Consequently, (b*+l) ^ a

and therefore A : bx+] = A : bx+J = R for every j e Z+ .   Secondly, we
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assume that A = (0) for the chain of ideals {A : bk}keZ+. If (0) : bk = (0)

for every k, then obviously the chain of ideals terminates. Otherwise, there

exists an i e Z+ such that (0) : b' ^ (0). If we put (0) : b' = B then
{(0) : bk}kn=i+l = {B : bk}keZ+ terminates by the above case A ^ (0). Hence

the chain of ideals {A: bk}keZ+ terminates in all cases.

Corollary 1. Let (R, m) be a valuation ring that is not an integral domain.

Then the following statements are equivalent:

(1) R satisfies (accr);

(2) every element in m is nilpotent;

(3) dimi? = 0;
(4) R is a Laskerian ring.

Proof. Assume (1) and let 0/aem. According to [1, Theorem 3.1, p. 19],

exactly one of the following occurs for the ideal (a): (i) (a) = (a2) is prime;

(ii) (an+l) c (an) for all n and CC=l(a") is a prime ideal; (iii) an = 0 for

some positive integer n . Since C\^Li(a") = (0) f°r a ^ 0 by Theorem 3 and

R is not an integral domain, (iii) is the only possible case; hence (1) => (2).

(2) =► (3) follows from the fact that m = nil(i?), the nilradical of R . (3) => (4)
is easy to see and (4) =*■ (1) is due to [11, Proposition 3, p. 307].

Corollary 2. Let (V, m) be a valuation domain that is not equal to its quotient

field. Then the following statements are equivalent:

(1) V is completely integrally closed;
(2) V has rank one;
(3) V is a Laskerian ring;

(4) fT=i(*") = (0) Mevery be m;
(5) V satisfies (accr).

Proof. The equivalence of (1), (2), and (3) is a combined result of [ 10, Theorem
5.19, p. 113; 6, Exercise 7, p. 456]. We have seen the equivalence of (4) and

(5) in Theorem 3. (2) implies (5) by [11, Theorem 6, p. 313]. To show that (5)
implies (2), let p be a prime ideal properly contained in m and b e m - p.
Then p C (bn) for each positive integer n so that p C O^L^b"). Since

n^li(^") = (0) by Theorem 3, p = (0) and m is the only nonzero prime ideal
of V. Hence, V has rank one. So (5) implies (2) and this completes the proof.

A ring R is called an arithmetical ring if its lattice of ideals is distributive,

i.e., An(B + C) = AnB + AnC for all ideals A, B, and C of R. It is
well known [10, Exercise 18, p. 150] that R is an arithmetical ring if and only

if for each maximal ideal m of R the ideals of Rm are linearly ordererd, i.e.,

Rm is a valuation ring. Thus applying Corollaries 1 and 2, Theorem 3 and [11,

Proposition 7, p. 308], we can obtain

Corollary 3. (1) If an arithmetical ring R satisfies (accr) then R has dimension

at most one. (2) A Priifer domain D satisfies (accr) if and only if D has

dimension at most one.

We remark that, unlike the case of valuation domains, a Priifer domain hav-

ing dimension at most one is not necessarily a Laskerian ring [6, Exercise 9,

p. 456].
An almost Dedekind domain is an integral domain D such that Dm is a

Noetherian valuation domain for every maximal ideal m . Clearly, it is a Priifer

domain having dimension at most one.
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Corollary 4. Every almost Dedekind domain satisfies (accr).

In [11] it was shown that if a ring (resp. module) satisfying (accr) is equipped
with an ideal-adic topology, then it satisfies some properties of a Noetherian

topological ring (resp. module). In particular, if a coherent ring R satisfies

(accr) and is equipped with a 5-adic topology, where B is a finitely generated

ideal of R, then R behaves like a Zariski ring. More precisely, (i) the HausdorfF

completion R* of R for the 5-adic topology is a flat /?-module and (ii) R*

is a faithfully flat .R-module if and only if B C J(R), the Jacobson's radical;
when this is the case, all ideals of R are closed [11, Proposition 8 and Theorem
8].

We have seen in Corollary 3 to Theorem 3 that every Priifer domain of di-

mension one satisfies (accr). Moreover, every Priifer domain is coherent. Thus,
Priifer domains having dimension one are coherent rings satisfying (accr). Note

that they are not necessarily Noetherian or Laskerian in view of the remark

made after Corollary 3 to Theorem 3. The following corollary for Priifer do-

mains having dimension one follows from Proposition 8, Theorem 8 and its

Corollary 1, and Corollary to Theorem 9, all of [11].

Corollary 5. Let D be a Priifer domain having dimension one, B = (b\, b2, ... ,

bn) a finitely generated ideal of D, and D* the Hausdorjf completion of D for
the B-adic topology. Then

(1) D* is a flat D-module,
(2) D* is a faithfully flat D-module if and only if B C J(D); when this is

the case, (i) every ideal of D is closed for the B-adic topology, and (ii) D* =

D[[xi, x2,..., x„]]/(x{ ~bx,x2-b2,... ,x„-b„);
(3) if M is a finitely generated D-module, N and F are finitely generated

submodules of M and M* is the Hausdorjf completion of M for the B-adic
topology, then we have M* =■ D*®M, (N+F)* = N*+F*, (NnF)* = N*nF*,
and (N : F)* = N*: F*, where * indicates completions of submodules.

3. Finitely generated modules over rings satisfying (accr)

Let R be a ring satisfying (accr) and M a finitely generated module over
R. We shall prove that M also satisfies (accr). The proof is similar to that
of the well-known fact "a finitely generated module over a Noetherian ring is

Noetherian."

Theorem 4. Let 0 -> M' —> M —► M" —► 0 be an exact sequence of R-modules.

Then M satisfies (accr) if and only if M' and M" satisfy (accr).

Proof. Suppose M satisfies (accr). By [11, Proposition 6, p. 307], M" satisfies

(accr), and trivially M' satisfies (accr). Conversely, suppose L is a submodule

of M such that L and M/L satisfy (accr). It suffices to show that M satisfies
(accr). For any submodule N of M and any element b of R, we consider

the ascending chain N : b C N : b2 c N : b3 c ■■■ . Since both L and M/L

satisfy (accr) and (N+L)/L :MjL bk = ((N+L) :M bx)/L for any X e Z+ , there

must exist positive integers 5 and t such that (N n L) :L b' = (N n L) :L n'+j
and (N + L) :M bs = (N + L) ;M bs+J for every j € Z+. We claim that
N : bs+t = N : bs+t+l . Clearly N : bs+l c N : bs+t+l . If x e N : bs+t+l

then xbs+l+l e N C N + L.  Hence, x e (N + L) : bs+t+l = (N + L) : bs,
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so that xbs - u + v for some u e N and v e L. Consequently, xbs+,+1 =

(u + v)bt+i = ub1+l + vbt+i 6 N. It follows that «6'+1 e N n L, whence

vb' e N nL as !/e(JVnl):i <V+1 = (N n L) :L b'. Now, we have that
xbs+t = (xbs)b' = (u + v)b' = ub' + vb' e N, i.e., x e N : bs+t, which means

that N : bs+t+l C N : bs+t. Hence N: bs+t+l = N : bs+l, and we can conclude

that M satisfies (accr). This completes the proof of the theorem.

Theorem 5. If a ring R satisfies (accr), then every finitely generated R-module
satisfies (accr).

Proof. By Theorem 4, a finitely generated free .R-module satisfies (accr). Every

finitely generated .R-module is the homomorphic image of a finitely generated

free .R-module. By Theorem 4 again, every finitely generated .R-module satisfies

(accr).

Corollary 1. Let N\, N2, ... , Nk be submodules of an R-module M. Suppose
that, for each i, M/Nj satisfies (accr). Then M/(N\ n N2 n •• • n Nk) satisfies
(accr).

Corollary 2. Let M be a finitely generated R-module and A = km\R M. Then
M satisfies (accr) if and only if the quotient ring R/A satisfies (accr).

Proof. Refer to the proof of Theorem 2 of [12, p. 180].
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